

HEPIA GENEVA WIND TUNNELS

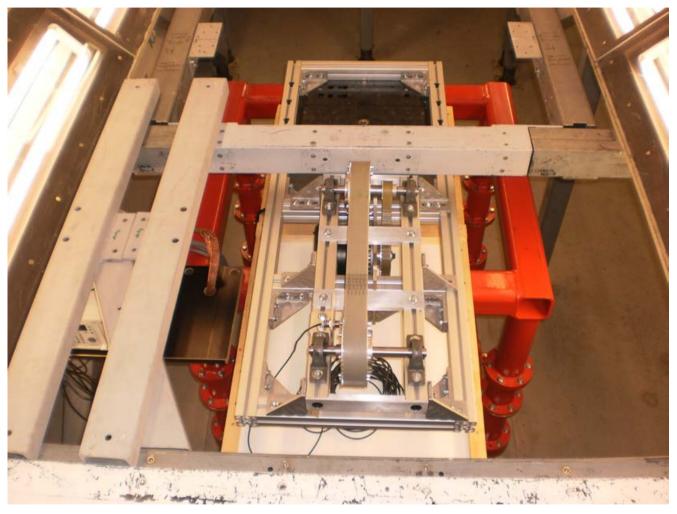
A short presentation of the laboratory and the methodology used for motorsport aerodynamics

Patrick Haas, Prof. Ordinaire
Head of the fluid mechanics group (cmefe)
hepia Geneva Wind Tunnels

THE HEPIA SUBSONIC WIND TUNNEL

KTM Moto2 2017

- Test section: 2.0 m x 1.5 m
- Maximal speed: env. 280 km/h
- 6 component balances
- Measurement robot
- Visualization systems
- Thermal and cooling tests capabilities

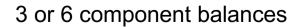


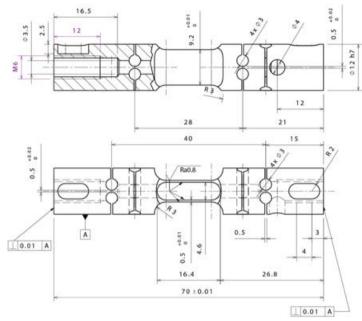
THE HEPIA SUBSONIC WIND TUNNEL

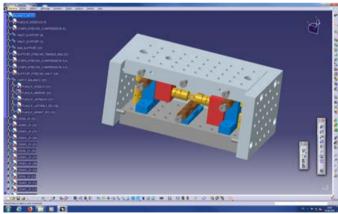
6 component aerodynamic balance with rolling belt

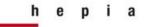
L'avenir est à créer

h e p i a


PRODUCTION AND CALIBRATION OF AERODYNAMIC BALANCES







THE HEPIA SUBSONIC WIND TUNNEL

Heaters for the evaluation of thermal systems and cooling during aerodynamic tests

hepia

CALCULATION CLUSTERS

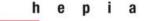
Baobab HPC: Intel Sandy Bridge, 2'500 cores, 10 To RAM, infiniband (hepia + unige)

Gordias HPC: ClusterVision, 224 cores, 448 Go RAM, infiniband

EoleC1-5: Oracle SUN, 44 cores, 132 Go RAM

EoleC6: Dell, 96 cores, 256 Go RAM

Workstations: 8 workstations Dell and HP 16 cores, 126 Gb RAM

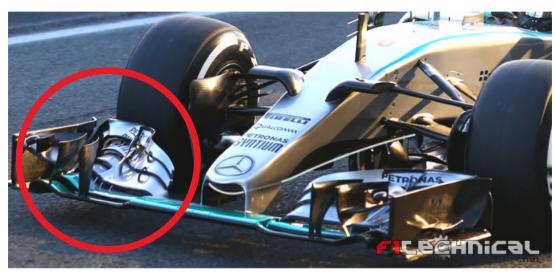

Storage (NAS): $2 \times 70 \text{ To} = 140 \text{ To}$ with confidentiality management

CFD software: ANSYS CFD Associate (industrial), Research

and Teaching

MECHANICAL SPORTS AT HEPIA (REFERENCES)

- Egli Motorradtechnik (1985)
- Motos ROC Annemasse (1992)
- ASM Formula 3 (2006)
- Eco-marathon Shell : Consomini, Biomobile.ch (2003 actual)
- Motostudent PoliTo Turin (2011-12)
- Moto2 NCS Rapid Inside Modena (2011)
- Audit of the Formula 1 teams (2010 2013) P. Haas, R. Putzu
- MotoGP Akira Kawasaki (2014 2015)
- Moto2 Tech3 (2014)
- Vyrus 986 M2 Wings (2016)
- Moto2 KTM (2016 actual)
- Moto2 Garage Plus et Technomag CarXpert : Suter, Kalex, KTM (2014 - actual)
- Moto2 Geotechnology NTS project (2016 actual)



Moto2 Tech 3 Mistral

h e p i a

Haute école du paysage, d'ingénierie et d'architecture de Genève

WHAT CAN BE LEARNED FROM THE FORMULA 1 TEAMS?

Ferrari SF15T, 2015

How they use CFD technics:

 CFD show all flow variables everywhere in the domain without disturbing anything for all scales of space and time!

Understanding of the flow behaviour

New ideas!

Design optimization – Parametric studies

L'avenir est à créer

h e p i a

Haute école du paysage, d'ingénierie et d'architecture de Genève

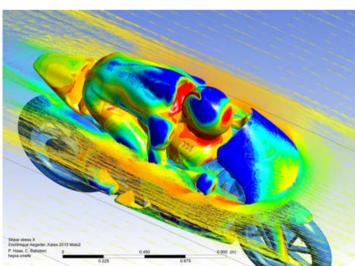
THE HEPIA GLOBAL METHODOLOGY

Since 2011, hepia uses with success a global methodology including 5 chapters :

1. Full scale wind tunnel tests

- With riders, seat definition and position
- CFD validation on the wind tunnel case
- Continuity with experience (known values)

2. Model wind tunnel tests (half-scale)


- Availability of the model all the year long
- Size of the model for a correct aspect ratio (surface of the test section / surface of the model)
- Costs (more days to work!)

3. Simulations (CFD)

- Flow behaviour understanding
- New ideas
- Motor cooling and thermal studies

THE HEPIA GLOBAL METHODOLOGY

4. On track measurements

- Instrumented motorcycle
- Full scale
- In open space (real case)
- Torque measurements at the wheel
- Work done on a MotoGP for studying the blocage in the wind tunnel at hepia.

5. Race data logger measurements

Study of the data obtained during the races

Tom Lüthi 2017

- Recognize each method for their strengths and weaknesses
- Use a global methodology with only one objective:
 Increasing the results on the track!

HEPIA MOTO2 AERODYNAMIC PROGRAM RESULTS

Aerodynamic resistance:

 $F = \frac{1}{2} \rho SCx V$

X

Moto2 Kalex Aegerter 2015 (with hepia work)

Simulations CFD : 0.230

WT full scale (corrected) : 0.252

WT original Kalex (without hepia work) : 0.279

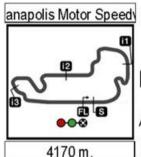
Moto2 Kalex Aegerter 2016 (with hepia work)

WT full scale (corrected) : < 0.245

WT original Kalex (without hepia work) : 0.269

Moto2 Suter Aegerter 2014 (with hepia work) : 0.262

Moto2 NCIS 2011 original : 0.320



L'avenir est à créer

SCx

ON THE TRACK...

The swiss Moto2 is offently the fastest of the paddock...

anapolis Motor Speed Results and timing service provided by TISSOT

Moto2

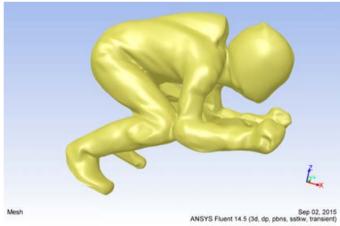
RED BULL INDIANAPOLIS GRAND PRIX

After the Race

Event Best Maximum Speed

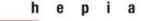
33

8	d	Rider	Nation	Team	Motorcycle	Km/h
	12	Thomas LUTHI	SWI	Derendinger Racing Interwetten	KALEX	290.0 Race
	77	Dominique AEGERTER	SWI	Technomag Racing Interwetten	KALEX	289.3 Free Practice Nr. 1
	25	Azlan SHAH	MAL	IDEMITSU Honda Team Asia	KALEX	288.7 Race
	11	Sandro CORTESE	GER	Dynavolt Intact GP	KALEX	287.6 Free Practice Nr. 3
	73	Alex MARQUEZ	SPA	EG 0,0 Marc VDS	KALEX	286.9 Race
	21	Franco MORBIDELLI	ITA	Italtrans Racing Team	KALEX	286.8 Race
	1	Tito RABAT	SPA	EG 0,0 Marc VDS	KALEX	286.8 Race
	39	Luis SALOM	SPA	Paginas Amarillas HP 40	KALEX	286.3 Qualifying
	40	Alex RINS	SPA	Paginas Amarillas HP 40	KALEX	286.0 Race
	36	Mika KALLIO	FIN	Italtrans Racing Team	KALEX	285.9 Race
	07	Variat VIEDCE	CDA	Took 2	TECH 2	oos o Rane



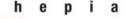
h e p i a



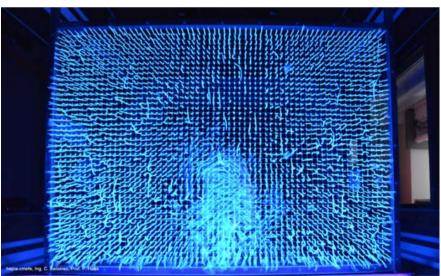


Half-scale radiator

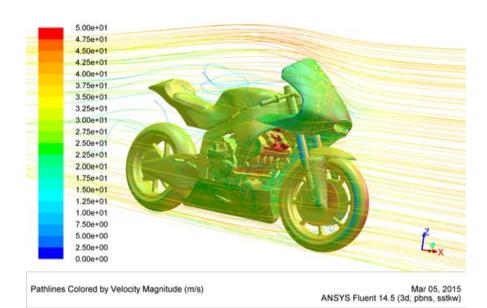
Scan 3D and production with 3D printers

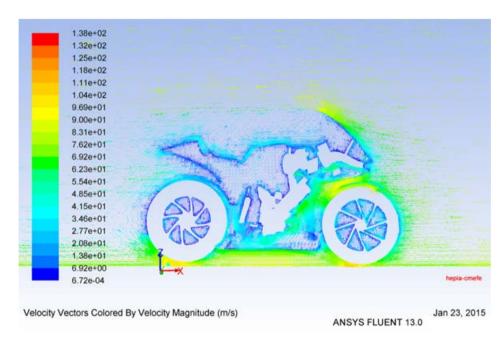

L'avenir est à créer

Model production



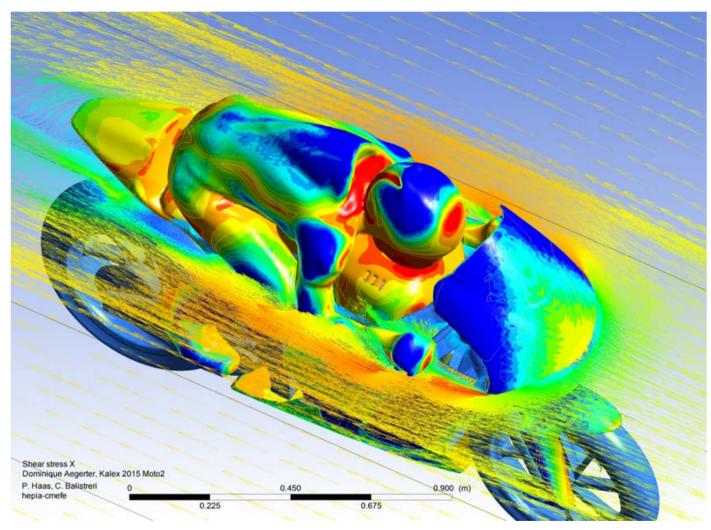
Moto2 Kalex with Dominique Aegerter

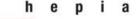

Moto2 Kalex with Dominique Aegerter


CFD SIMULATION

- Radiator as a model (head loss and thermal source)
- Rotating wheels

Objectives


- Internal and external aerodynamics
- Drag optimization
- Cooling and thermal evaluation


CFD SIMULATION

Moto2 Kalex with Dominique Aegerter Shear stress x and speed in a x-y plan

L'avenir est à créer

THE USE OF CFD IN THE HEPIA METHODOLOGY

We have demonstrated in the Moto2 program, CFD is an important part of the methodology. At least:

- Flow understanding
- Blocage ratio correction
- Design optimization

hepia work actually using this methodology in quasi all projects performed for our industrial partners.

In a recent project, the concept has been pushed to the limit:

We performed the validation of the CFD for a case in wind tunnel at full scale and with a very large model for the test section :

- Same physics (flow, thermal, time dependent situations, ecc.)
- Approximately same gradient values
- Full details

Then, the final values have been calculated using the CFD model!

QUESTIONS?

Patrick Haas, Prof. Ord.

patrick.haas@hesge.ch Tél +41 22 54 62 654

www.cmefe.ch

