Rapport de l'exercice de mesure dans le cadre de l'intercomparaison 2017 en spectrométrie gamma

Destinataire : Aux laboratoires de mesure de la radioactivité

Version du :	30.11.2017	Claude Bailat, François Bochud, <i>Auteurs :</i> Thierry Buchillier, IRA Sybille Estier et Philipp Steinmann, OFSP
--------------	------------	--

Introduction

L'Institut de radiophysique (IRA) est mandaté par l'Institut fédéral de métrologie (METAS) pour la détermination, le maintien et la diffusion de l'unité d'activité, le becquerel. La Section de la radioactivité de l'environnement (URA) de l'Office fédéral de la santé publique (OFSP) est responsable de la surveillance de la radioactivité dans l'environnement. Comme de coutume, l'IRA et l'URA ont invité l'ensemble des laboratoires effectuant des mesures d'activité dans l'environnement et les produits de consommation à participer à l'intercomparaison annuelle de spectrométrie gamma.

L'organisation et l'analyse des données de l'intercomparaison suivent autant que possible les prescriptions des normes suivantes :

- 1. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, Guide to the Expression of Uncertainty in Measurement, 1995.
- 2. ILAC, ILAC Guidelines for the Requirements for the Competence of Providers of Proficiency Testing Schemes, ILAC G13, 2007.
- 3. ISO/IEC, Proficiency testing by interlaboratory comparisons. International Standard Organization, ISO Guide 43, 1997.
- 4. ISO/IEC, Statistical methods for use in proficiency testing by interlaboratory comparisons. International Standard Organization, ISO 13528, 2005.

Le thème de l'intercomparaison cette année est la mesure d'un échantillon solide de type TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials). Sur les 29 laboratoires suisses concernés par ce type de mesure, 21 ont participé et 19 ont fourni des résultats. La liste des participants est présentée dans le Tableau 1. Le Tableau 2 résume les équipements utilisés par ces participants.

Tableau 1 : Participants à l'intercomparaison.

titre	prenom	nom	adresse1	adresse2	adresse3	adresse4	npa	localite	e-mail
Herr	Stephan	Reber	Kantonales Labor Zürich	Abteilung Elementanalytik	Fehrenstrasse 15	Postfach 1471	8032	Zürich	stephan.reber@klzh.ch
Herr	Andreas	Leupin	ENSI Eidgenössisches Nuklearsicherheitsinspektorat	Bereich Strahlenschutz	Industriestrasse 19		5200	Brugg	andreas.leupin@ensi.ch
Monsieur	Fabrice	Malacrida	CERN	DGS - SEE			1211	Genève 23	fabrice.malacrida@cern.ch
Monsieur	Gilles	Triscone	hepia haute école du paysage, d'ingénierie et d'architecture	Laboratoire de Physique Nucléaire	Rue de la Prairie 4		1202	Genève	gilles.triscone@hesge.ch
Herr	Dietmar	Baumann	Amt für Lebensmittelsicherheit und Tiergesundheit GR	Planaterrastrasse 11	Postfach		7001	Chur	dietmar.baumann@alt.gr.ch
Monsieur	Marco	Jermini	Laboratorio cantonale	Chimico	Via Mirasole 22		6500	Bellinzona	marco.jermini@ti.ch
Frau	Eva	Vogt	Zwilag	Zwischenlager Würenlingen AG	Industriestrasse Beznau 1		5303	Würenlingen	eva.vogt@zwilag.ch
Herr	Hans	Sahli	Labor Spiez	Gruppe Radioaktivität	Austrasse		3700	Spiez	hans.sahli@babs.admin.ch
Herr	Claudius	Gemperle	Kanton Aargau DGS	Amt für Verbraucherschutz	Lebensmittelkontrolle	Obere Vorstadt 14	5000	Aarau	claudius.gemperle@ag.ch
Herr	Matthias	Brennwald	EAWAG	W+T	Ueberlandstrasse 133	Postfach 611	8600	Dübendorf	matthias.brennwald@eawag.ch
Herr	Markus	Zehringer	Kantonales Laboratorium BS	Kannenfeldstrasse 2	Postfach		4012	Basel	markus.zehringer@bs.ch
Monsieur	Pascal	Froidevaux	Institut de radiophysique	GRE	Rue du Grand-Pré 1		1007	Lausanne	pascal.froidevaux@chuv.ch
Herr	Patrick	Franz	Axpo Power AG	KKW Beznau	KBU-C		5312	Döttingen	patrick.franz@axpo.com
Monsieur	Giovanni	Ferreri	OFSP	Section Radioactivité de l'environnement	Schwartzenburgstr. 157		3003	Bern	giovanni.ferreri@bag.admin.ch
Monsieur	Michel	Hammans	SUVA	Bereich Physik	Rösslimattstrasse 39	CP 4358	6002	Luzern	michel.hammans@suva.ch
Herr	Erich	Nyfeler	Kantonales Laboratorium BE	Muesmattstrasse 19			3012	Bern	erich.nyfeler@gef.be.ch
Herr	Erich	Schmutz	BKW Energie AG	Kernkraftwerk Mühleberg	Ressort Chemie		3203	Mühleberg	erich.schmutz@bkw.ch
Herr	Rolf	Althaus	Kernkraftwerk Leibstadt AG	Kalteslabor UCK			5325	Leibstadt	rolf.althaus@kkl.ch
Monsieur	Eric	Poitevin	Centre de Recherche Nestlé	Vers-chez-les-Blanc	Case postale 44		1000	Lausanne 26	eric.poitevin@rdls.nestle.com
Herr	Martin	Heule	Paul Scherrer Institut	Abteilung für Strahlenschutz und Sicherheit (ASI)	Radioanalytik		5232	Villigen - PSI	martin.heule@psi.ch
Herr	Robert	Brogioli	Dienststelle Lebensmittelkontrolle und Veterinärwesen (DILV)	Analytik/Qualitätssicherung	Vonmattstrasse 16		6003	Luzern	robert.brogioli@lu.ch

Tableau 2 : Résumé des équipements des différents laboratoires.

Participants	Détecteur	Mise en fonction	Eff. [%]	Logiciel	Étalonnage, type	Date
Kantonales Labor Zürich	HPGe type p PGT Ge-IGC 25	1989	25.3	Interwinner 7.1	Mix 565	1999
ENSI Eidgenössisches Nuklearsicherheitsinspektorat	Canberra GC5019, p-type	2008	50	Interwinner 7.1	Labsocs	2010
CERN	Canberra GC 5019	2012	50	G2K 3.4 Apex 1.4	LabSOCS	-
hepia haute école du paysage, d'ingénierie et d'architecture	Canberra GC1018	2010	10	Interwinner 8.0	LabSOCS	2017
Amt für Lebensmittelsicherheit und Tiergesundheit GR	HPGe type p Ortec GEM-25P4	2005	25.6	InterWinner ver.5.05	Intergamma CMI CBSS2	2016
Laboratorio cantonale Ti	HPGe type p Ortec GEM30	2003	30	Interwinner ver. 5.0	Intergamma CMI CBSS2	2015
Zwilag	Eurisys type p	2005	30	InterWinner 8.0	Eckert&Ziegler GCRB13919	2017
Labor Spiez	HPGe type n Canberra GR 2519	2010	31	Genie 2000 Apex 1.4	Labsocs	2017
Kanton Aargau DGS	HPGe type p PGT IGC27	1989	27.7	Winner ver. 6.0	Intergamma CMI CBSS2	2015
EAWAG	Canberra GR2719	1990	27.1	Genie 2000	Mix Eckert-Ziegler	2013
Kantonales Laboratorium BS	Canberra type n EGPC25	<2010	25	Interwinner 7.0	CMI	2014

Participants	Détecteur	Mise en fonction	Eff. [%]	Logiciel	Étalonnage, type	Date
Institut de radiophysique	HPGe type p Canberra GCW4523	2001	40	Apex Gamma	IRA	2010
Axpo Power AG	Canberra type p GC3518	2009	35	Interwinner 8	Intergamma CMI CBSS2	2015
OFSP	Ortec type n GMX30-83-A	2013	30	Winner 7.0	Intergamma CMI CBSS2	2015
SUVA	HPGe type p Ortec GEM20-70	2012	23	Winner ver. 6.0	Intergamma CMI CBSS2	2012
Kantonales Laboratorium BE	Canberra GC2018	2014	23.1	Genie 2000 v.3.3	Eckert Ziegler AE-4846	2014
BKW Energie AG	Ortec type p GEM-20P4-70	2009	24.3	Interwinner 7.0	IRA	2009
Kernkraftwerk Leibstadt AG	Canberra GC4518, p-type, Cryocycle II	2012	45	Interwinner 7.1	1035-SE-40197-15 CMI CBSS2	2015
Centre de Recherche Nestlé	Ortec type p GEM 40P	2004	40	LVIS	Intergamma CMI CBSS2	2015
Paul Scherrer Institut	Ortec type p GEM30-70	2012	36	Winner ver. 7.0	PTB Standard- mischlösung	2012
Dienststelle Lebensmittelkontrolle und Veterinärwesen (DILV)	Ortec type n GMX30P4	2006	32.8	InterWinner ver. 7.0	CMI	2012

Préparation des échantillons et valeurs de référence

Origine du matériau

Les échantillons de l'intercomparaison gamma de cette année ont été obtenus à partir de résidus de filtres d'une usine de traitement du verre. Le matériau initial était fortement inhomogène et un tamisage a été réalisé. La poudre obtenue a été brassée, puis répartie dans 17 flacons Semadeni 500 ml (type 1742) dans lesquels les échantillons ont été livrés aux participants.

Ce matériau contient de la radioactivité d'origine naturelle, mais en concentration renforcée par les processus industriels au cours desquels il est produit. Ces processus impliquent que les séries de radioactivité naturelle ne sont pas à l'équilibre radioactif. Compte tenu du délai écoulé depuis la production de ces résidus, plus de 4 ans, seul l'équilibre entre les radionucléides mères et les filles à vie relativement courte est atteint.

Une méthode pour analyser les radionucléides naturels est donnée à l'annexe 1.

La composition du matériau n'est pas connue. Il semble qu'il ne contient pas, ou presque pas, de SiO₂ et qu'il contient du plomb (indications de F. Byrde du LS).

Contrôle des prescriptions de l'ADR pour l'envoi

Des mesures ont été réalisées à l'IRA sur notre spectromètre de référence pour contrôler la concentration radioactive des échantillons afin d'évaluer l'indice de transport. Les flacons transmis aux participants avaient une activité totale induisant un indice de transport en dessous de 1, permettant ainsi d'éviter toutes restrictions de transport. Ces échantillons sont cependant toxiques et doivent être manipulés dans un laboratoire avec précautions.

Radionucléides	Limite d'exemption selon ADR [kBq]	Activité du colis [kBq]	Indice de transport	Les filles suivantes à l'équilibre sont prises en compte :
K-40	1000	0.288	0.0003	
Pb-210	10	0.694	0.0694	Bi-210 et Po-210
U(nat)	1			Th-234, Pa-234m, U-234, Th-230, Ra-226, Rn-222, Po-218, Pb- 214, Bi-214, Po-214, Pb-210, Bi-210 et Po-210
Ra-226	10	1.238	0.1238	Rn-222, Po-218, Pb-214, Bi-214 et Po-214
U-238	10	0.060	0.0060	Th-234 et Pa-234m
U-235	10	0.006	0.0006	Th-231
U-234	100	0.060	0.0006	For medium to slow lung absorption
Th(nat)	1	0.113	0.1131	Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi- 212, Tl-208 (0.36), Po-212 (0.64)
Ra-223	100	0.047	0.0005	Rn-219, Po-215, Pb-211, Bi-211, Po-211, Tl-207
Indice total			0.31	

Tableau 3 : Limites d'exemption et indices de transport selon l'ADR 2016. L'indice total maximal pour un transport exempté est de 1.

Contrôle d'homogénéité

Plusieurs mesures ont été exécutées par le groupe de radiométrologie de l'IRA dans le but de contrôler l'homogénéité de l'activité dans le matériau distribué pour l'intercomparaison. Il s'agissait de vérifier la reproductibilité entre les échantillons fournis aux participants, de même que l'homogénéité de l'activité dans l'un des échantillons.

Homogénéité inter-échantillon

Tous les échantillons (no 1 à 17) ont été mesurés sur un détecteur HPGe Ortec de type GMX 23% sur une durée de 7200 secondes. L'analyse des résultats a montré que la reproductibilité inter-échantillon est satisfaisante. Le Tableau 4 présente la dispersion statistique des 17 valeurs obtenues, caractérisée par l'écart-type, pour les principaux radionucléides. Cette dispersion statistique est comparable à l'incertitude-type (à k=1) de chaque valeur individuelle, ce qui indique une bonne reproductibilité des échantillons préparés pour l'intercomparaison.

Tableau 4. Dispersion des valeurs du contrôle sur HPGe de tous les échantillons, comparée à l'incertitude des mesures individuelles

Radionucléide	Dispersion des valeurs	Incertitude-
	(1 écart-type)	type (à k=1)
K-40	5%	6%
Ra-226	3%	3%
Pb-214	1%	1.5%
Bi-214	1%	1.5%
Pb-210	6%	7%

Homogénéité intra-échantillon

L'échantillon no 17 a été mesuré plus longuement (24 h), directement dans le récipient Semadeni 500 ml (type no 1742) dans le but de quantifier l'activité des radionucléides. Ensuite, 3 prélèvements de 40 ml de cet échantillon ont été mesurés dans un récipient Semadeni 40 ml (type no 1712, dit "D5") pour le contrôle de la reproductibilité intraéchantillon. Les résultats de ces mesures d'homogénéité sont donnés dans le Tableau 5.

Tableau 5 : Mesures d'homogénéité du matériau sur l'échantillon no 17. Colonne 2 : dans un récipient Semadeni 500 ml. Colonne 3-5 : mesure de 3 prélèvements dans un récipient D5 40 ml. Colonnes 6-7 : moyenne et écart-type des 3 prélèvements. Dernière colonne : rapport entre la moyenne des trois prélèvements et le flacon Semadeni de 500 ml.

			1								
	SE 500 ml		D5 no 1		D5 no 2		D5 no 3		Moyenne	Ect.rel.	Rapport
Radionucl.	A (Bq/kg)	U (%)	(Bq/kg)	(%)	D5/Sem						
K-40	448	3.9	377	16	468	5.6	455	5.2	433	11%	0.97
Chaîne U-238											
Th-234	56	27	81	66	95	23	93	21	90	9%	1.59
Ra-226	1857	4.6	1857	6.1	1840	4.6	1861	4.5	1853	1%	1.00
Pb-214	1747	3.5	1778	3.5	1762	3.4	1751	3.4	1764	1%	1.01
Bi-214	1616	2.7	1580	3	1592	2.7	1575	2.6	1582	1%	0.98
Pb-210	1093	20	1057	17	1060	16	1011	16	1043	3%	0.95
Chaîne Th-232											
Th-232	< 950		< 1800		< 700		< 600				
Ac-228	140.1	2.4	129.9	8.7	132.1	4.5	124.5	4.3	129	3%	0.92
Th-228											
Ra-224	< 65		< 250		< 85		< 70				
Pb-212	167	4.2	164	5.6	166	4.2	162.2	4.2	164	1%	0.98
Bi-212	178	7	182	26	171	10	163	10	172	6%	0.96
TI-208 corr.	149.6	3.8	144.8	9	145.7	4.4	144.8	4.1	145	0.3%	0.97
Chaîne U-235											
U-235	< 30		< 35		< 20		9	70	9		
Th-231	< 300		< 700		< 250		< 210				

	SE 500 ml		D5 no 1		D5 no 2		D5 no 3		Moyenne	Ect.rel.	Rapport
Radionucl.	A (Bq/kg)	U (%)	(Bq/kg)	(%)	D5/Sem						
Pa-231	< 50		< 150		< 60		< 50				
Th-227	56	13	45	30	55	14	45	14	48	11%	0.85
Ra-223	63	20	66	20	72	20	74	20	71	6%	1.12
Rn-219	72	10	96	17	76	9	73	7.8	82	15%	1.14
Pb-211	62	35	< 180		56	56	48	52	52	11%	0.84
Bi-211	< 50		< 170		< 70		< 60				

Ces mesures ont montré les points suivants :

- L'accord entre les activités des 3 prélèvements de 40 ml est bon. Les activités du Ra-226 et de ses filles sont bien concordantes. Celle de K-40 un peu moins. Il est vrai qu'il faudrait examiner un nombre plus élevé de prélèvements pour que ce contrôle intraéchantillon soit totalement fiable.
- L'accord entre la mesure de l'échantillon entier (Semadeni 500 ml) et la moyenne des prélèvements de 40 ml de cet échantillon est bon. Ceci est indiqué par les rapports D5/Sem voisins de 1 dans le Tableau 5. Les valeurs sont concordantes aux incertitudes près.

Corrections d'autoatténuation

Les mesures citées ci-dessus ont montré que l'effet de l'autoatténuation des gammas dans l'échantillon est non négligeable. Cet effet peut entraîner une sous-estimation assez nette de l'activité de l'échantillon pour les lignes de basse énergie.

L'estimation des corrections nécessaires repose sur la connaissance de la composition du matériau, c'est-à-dire des éléments présents et de leur proportion en masse. Ici, la composition du matériau n'est pas connue et la méthode suivie a été de déterminer expérimentalement le coefficient d'atténuation massique du matériau (μ/ρ). Dans ce but, des sources de Pb-210, de Ba-133 et d'Eu-152 ont été utilisées pour déterminer la transmission du rayonnement à travers une épaisseur donnée d'échantillon. En appliquant la loi d'atténuation d'exponentielle, le coefficient d'atténuation (μ/ρ) a pu être estimé suffisamment précisément pour différentes énergies. Un calcul des facteurs de corrections est ensuite effectué par une méthode analytique (ou au moyen de logiciels tels que EFFTRAN, GESPECOR, WinnerTrack, APEX, ETNA, etc). Selon notre expérience, le facteur de correction était le plus critique pour la ligne de 46.5 keV du Pb-210 : un facteur 2.7 de correction pour un Semadeni 500 ml et un facteur 1.5 pour un D5 40 ml. Pour la ligne 186 keV du Ra-226, la correction est estimée à 1.2 et 1.05 respectivement. Aux énergies plus élevées, elles deviennent moins importantes mais restent de plusieurs pour-cent.

Choix de la valeur de référence de l'intercomparaison

La mesure de spectrométrie gamma de l'IRA n'a pas été choisie comme valeur de référence. L'évaluation des valeurs de référence a été réalisée par la moyenne des participants. Ce choix est justifié par la confiance des organisateurs en la mesure des participants, les risques d'inhomogénéité de l'échantillon et par le fait que cette exercice ne nécessite pas une valeur de référence métrologique.

Résultats et discussion

Le Tableau 6 présente l'ensemble des valeurs de concentration radioactive en Bq/kg et d'incertitude élargie relative (U) (k=2) communiquées par les laboratoires. Les résultats sont un peu difficiles à interpréter car l'échantillon est assez compliqué à analyser. Pour les raisons évoquées plus haut, on ne peut pas considérer que les chaînes naturelles sont à l'équilibre radioactif. Dans l'analyse des résultats, on les a donc séparées en sous chaînes.

Le Tableau 7 reprend les valeurs de concentration radioactive (Bq/kg) et incertitudes élargies relatives (U) (*k*=2) en % communiquées par chaque laboratoire, mais nous avons ajouté pour chaque chaîne ou sous chaînes les *valeurs considérées*, en gras, pour l'analyse des données. Celles-ci ont été obtenues en calculant la moyenne pondérée quand plusieurs valeurs de concentration pour une chaîne ont été rapportées et U dans ce cas est l'incertitude élargie (k=2) sur la moyenne pondérée. La pondération a été choisie comme étant l'inverse du carré de l'incertitude élargie indiquée par le participant pour le radionucléide correspondant. Cette manière de faire permet de diminuer l'influence de valeurs entachées de larges incertitudes. Comme les incertitudes sont calculées par le participant.

Le Tableau 8 présente le récapitulatif de ces valeurs considérées.

Finalement, nous avons calculé les moyennes arithmétiques et les moyennes pondérées des valeurs considérées par radionucléides, Tableau 9. Ensuite, nous avons pu évaluer l'exactitude des résultats en examinant le rapport de la valeur considérée à la moyenne arithmétique des participants, Tableau 9. Dans ce cas, nous avons utilisé la moyenne arithmétique pour ce rapport afin de ne pas favoriser les participants ayant sous-estimé leurs incertitudes. Une grande différence entre la moyenne arithmétique et la moyenne pondérée nous indique des incohérences entre participants dans l'évaluation de l'incertitude. On remarque que c'est le cas pour la sous chaîne du Th-228 et la chaîne U-235.

La Figure 1 résume les valeurs de rapports à la moyenne pour tous les radionucléides et tous les participants. Les Figure 2 à Figure 5 séparent ces valeurs par radionucléide. On peut remarquer que la plupart des participants sont en accord à + ou - 20 % pour la majorité des radionucléides analysés. Un désaccord supérieur pour le Pb-210 et la chaîne U-235 a été trouvé.

Pour le Pb-210, l'origine de ce désaccord est certainement la difficulté de corriger convenablement pour l'effet de l'autoatténuation, en particulier puisque la composition n'est pas connue. Certains participants ont admis qu'il s'agissait de SiO₂ ou de terre pour déterminer ces corrections mais l'atténuation réelle du matériau était encore plus grande.

Pour l'U-235, la difficulté provient de la très basse activité et il en résulte une grande incertitude statistique.

Echantillon no :	2		3		4		5		6		7-A	1	7-B		8		9		10		11		12-A	1	12-B		13		14		15-A		15-B		16		17	
Radionucléides	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U
K-40	442	16	416	12	420	10	494	4	530	6	474	8	531	4.3	508	10	497.4	3.9	511	6.5	520	5.0	470	10	455.4	10.7	462	5	510	39	470	7.2	420	18.2	448	8.4	465	5
Chaîne de U-238																																						
Th-234	< 30		13	59					< LD										119	30.3					75.1	24.8												
Pa-234m			65	73					< LD																													
Pa-234																											11	12										
Ra-226	1633	17	1510	23	1540	15	1696	4	1686	17	1720	20	1659	7.6					2175	4.1	1700	3.6	1725	10	1781	10.1	1735	4	1400	41	1530	10			1747	10	1730	5
Pb-214	1600	13	1660	13					1655	17	1840	8	1896	4.1	1723	10			1888	5.0			1539	10	1778	10.0	1757	1	1400	45			1500	15.2	1694	10	1740	6
Bi-214	1537	16	1660	11					1706	9	1820	5	1728	3.6			1772	3.8	1888	5.0			1501	10	1723	10.0	1740	1	1500	35			1500	15.3	1462	10	1660	5
Pb-210	413	32	661	33					< LD		1060	29							1012	6.0					811.1	10.4			610	39					1462	15	680	37
Chaîne de Th-232																																						
Th-232			< 605		140	25											151.1	4.3			150	4.0																
Ra-228																															120	10						
Ac-228	126	16	123	13					145	7	138	6	134	4.4					138	7.2			119	10	125.9	12.2	127	4	120	44			120	17.6	103.9	15	133	3
Th-228	150	13					160	4	166	16																									142.0	10		
Ra-224				10								10	361	46.1										10	253.3	14.4	5520	32	450	4.0			4.50	15.0				
Pb-212			151	19					156	17	178	16	174	4.3									147	10	166.6	10.1	168	3	150	42			150	15.8	142.0	8	164	2
BI-212			151	14					1/2	10	164	11	184	7.1			95.59	4.0					96	10	154.7	12.6	190	6	1/0	42					142.5	16	1/1	12
11-208			48	13					56	9	59.9	1	457	4.0					455	<u> </u>					53.9	10.4	44	5	4/	3/			440	40.0	405.0	45	55.1	2
11-208 corrige embr.			134	13					156	9	167	1	157	4.2					155	6.0					150	10.4	153	5	131	31			140	16.8	165.9	15	153	2

Tableau 6 : Résultats bruts de concentration radioactive (Bq/kg) et incertitudes élargies relatives (U) (k=2) en % communiqués par chaque laboratoire.

Page 9 de 25

Echantillon no :	2		3		4		5		6		7-A		7-B		8		9		10		11		12-A		12-B		13		14		15-A		15-B		16		17	
Radionucléides	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U
Chaîne de U-235																																						
U-235			6	92					< LD		17.5	29	17	28.4					< 21								22	18	17	72			100	16.0				
Ac-227																																						
Th-227			46	22					46	19			56	8.4					73.0	7.0	67	7.4	56	10	56.2	19.6	55	5					51	31.2			53.5	8
Ra-223			28	45									77	6.0					84.5	8.4					43.2	10.6							64	24.9			79	2
Rn-219			59	20					63	17			64	16.7																			48	54.8				
Pb-211																																					103	11
Bi-211													49	21.0																							116	46
Divers																																						
Be-7			< 13																																			
Cs-137			< 1.1				1																															
Cs-134							7																															
Cd-109							1944	6																														
Xe-133							11750	8 (
Th-231																																	270	29.6				
Pa-232																											17	8										
Corr. autoatt.	Oui		Oui		Oui		Non		Non		Oui		Non		Non		-		Oui		Non		Oui		Non		Non		Non		Non		Non		Oui		Oui	
Corr. somm.	Non		Non		Non		Non		Non		Oui		Non		Non		-		Non		Non		Oui		Non		Non		Non		non		Non		Non		Non	

Tableau 7 : Résultats bruts de concentration radioactive (Bq/kg) et incertitudes élargies relatives (U) (*k*=2) en % communiqués par chaque laboratoire avec les valeurs considérées en gras pour l'analyse des données. Celles-ci ont été obtenues en calculant la moyenne pondérée quand plusieurs valeurs de concentration pour une chaîne ont été rapportées et U dans ce cas est l'incertitude élargie (k=2) sur celle-ci.

Echantillon no :	2		3		4		5		6		7-A		7-B		8		9		10		11		12-A		12-B		13		14		15-A		15-B		16		17	
Radionucléides	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U
K-40	442	16	416	12	420	10	494	4	530	6	474	8	531	4.3	508	10	497.4	3.9	511	6.5	520	5	470	10	455.4	10.7	462	5	510	39	470	7.2	420	18.2	448	8.4	465	5
Chaîne de U-238																																						
Th-234	< 30		13	59					< LD										119	30.3					75.1	24.8												
Pa-234m			65	73					< LD																													
Pa-234																											11	12										
Ra-226	1633	17	1510	23	1540	15	1696	4	1686	17	1720	20	1659	7.6					2175	4.1	1700	3.6	1725	10	1781	10.1	1735	4	1400	41	1530	10			1747	10	1730	5
Pb-214	1600	13	1660	13					1655	17	1840	8	1896	4.1	1723	10			1888	5			1539	10	1778	10	1757	1	1400	45			1500	15.2	1694	10	1740	6
Bi-214	1537	16	1660	11					1706	9	1820	5	1728	3.6			1772	3.8	1888	5			1501	10	1723	10	1740	1	1500	35			1500	15.3	1462	10	1660	5
Valeurs considérées	1588	27	1639	27	1540	15	1696	4	1693	25	1820	21	1776	9	1723	10	1772	3.8	1991	8	1700	3.6	1577	17	1760	17	1748	4	1440	70	1530	10	1500	22	1614	18	1705	9
Pb-210	413	32	661	33					< LD		1060	29							1012	6					811.1	10.4			610	39					1462	15	680	37
Chaîne de Th-232																																						
Th-232			< 605		140	25											151.1	4.3			150	4																
Ra-228																															120	10						
Ac-228	126	16	123	13					145	7	138	6	134	4.4					138	7.2			119	10	125.9	12.2	127	4	120	44			120	17.6	103.9	15	133	3
Valeurs considérées	126	16	123	13					145	7	138	6	134	4.4					138	7.2			119	10	125.9	12.2	127	4	120	44	120	10	120	17.6	103.9	15	133	3
Th-228	150	13					160	4	166	16																									142	10		
Ra-224													361	46.1											253.3	14.4	5520	32										
Pb-212			151	19					156	17	178	16	174	4.3									147	10	166.6	10.1	168	3	150	42			150	15.8	142	8	164	2
Bi-212			151	14					172	10	164	11	184	7.1			95.59	4					96	10	154.7	12.6	190	6	170	42					142.5	16	171	12
TI-208			48	13					56	9	59.9	7													53.9	10.4	44	5	47	37							55.1	2
TI-208 corrigé embr.			134	13					156	9	167	7	157	4.2					155	6					150	10.4	153	5	131	37			140	16.8	165.9	15	153	2
Valeurs considérées	150	13	143	28			160	4	162	27	167	21	167	100			95.59	4	155	6					163	29	167	9	145	74			145	23	144	27	158	13

Echantillon no :	2		3		4	5		6		7 - A		7-B		8		9		10		11		12-A		12-B		13		14		15-A		15-B		16		17
Radionucléides	А	U	А	U	A U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	A U
Chaîne de U-235																																				
U-235			6	92				< LD		17.5	29	17	28.4					< 21								22	18	17	72			100	16			
Ac-227																																				
Th-227			46	22				46	19			56	8.4					73	7	67	7.4	56	10	56.2	19.6	55	5					51	31.2			53.5 8
Ra-223			28	45								77	6					84.5	8.4					43.2	10.6							64	24.9			79 2
Rn-219			59	20				63	17			64	16.7																			48	54.8			
Pb-211																																				103 11
Bi-211												49	21																							116 46
Valeurs considérées			45	44				53 2	26			65	19					77	11	67	7.4	56 1	10	45	26							56	62			76 72

Echantillon no :	2		3		4	5	5	6		7-A		7-B		8		9		10		11		12-A		12-B		13		14		15-A		15-B		16		17
Radionucléides	А	U	А	U	A U	A	A U	А	U	А	U	А	U	А	U	А	U	А	U	А	U	Αl	U	А	U	А	U	А	U	А	U	А	U	А	U	A U
K-40	442	16	416	12	420 10) 49	94 4	530	6	474	8	531	4.3	508	10	497.4	3.9	511	6.5	520	5	470 1	10	455.4	10.7	462	5	510	39	470	7.2	420	18.2	448	8.4	465 5
Sous-chaîne Ra-226	1588	27	1639	27	1540 15	5 169	96 4	1693	25	1820	21	1776	9	1723	10	1772	3.8	1991	8	1700	3.6	1577 1	17	1760	17	1748	4	1440	70	1530	10	1500	22	1614	18	1705 9
Pb-210	413	32	661	33				< LD		1060	29							1012	6					811.1	10.4			610	39					1462	15	680 37
Sous chaîne Ra-228	126	16	123	13				145	7	138	6	134	4.4					138	7.2			119 1	10	125.9	12.2	127	4	120	44	120	10	120	17.6	103.9	15	133 3
Sous chaîne Th-228	150	13	143	28		16	60 4	162	27	167	21	167	100			95.59	4	155	6					163	29	167	9	145	74			145	23	144	27	158 13
Chaîne U-235			6	92						17.5	29	17	28.4													22	18	17	72			100	16			
Sous chaîne Ac-227			45	44				53	26			65	19					77	11	67	7.4	56 1	10	45	26							56	62			76 72

Tableau 8 : Tableau récapitulatif des valeurs considérées pour l'analyse des données.

Tableau 9 : Evaluation du rapport de la valeur considérée sur la moyenne arithmétique des valeurs considérées pour tous les participants. L'incertitude élargie U est obtenue en combinant quadratiquement les incertitudes relatives.

		Radionucléides						
Echantillon n°	Grandeurs	K-40	Sous-chaîne Ra-226	Pb-210	Sous chaîne Ra-228	Sous chaîne Th-228	Chaîne U-235	Sous chaîne Ac-227
2	A [kBq/kg]	442	1588	413	126	150		
	U [%]	16	27	32	16	13		
	Rapport	0.93	0.95	0.49	1.00	0.99		
	U rapp [%]	19	29	64	20	22		
3	A [kBq/kg]	416	1639	661	123	143	6	45
	U [%]	12	27	33	13	28	92	44
	Rapport	0.87	0.98	0.79	0.97	0.94	0.20	0.75
	U rapp [%]	16	29	65	17	33	188	52
4	A [kBq/kg]	420	1540					
	U [%]	10	15					
	Rapport	0.88	0.92					
	U rapp [%]	15	19					
5	A [kBq/kg]	494	1696			160		
	U [%]	4	4			4		
	Rapport	1.04	1.01			1.06		
	U rapp [%]	12	12			18		
6	A [kBq/kg]	530	1693		145	162		53
	U [%]	6	25		7	27		26
	Rapport	1.11	1.01		1.15	1.07		0.88
	U rapp [%]	13	27		14	32		38
7 - A	A [kBq/kg]	474	1820	1060	138	167	17.5	
	U [%]	8	21	29	6	21	29	
	Rapport	1.00	1.09	1.26	1.09	1.10	0.58	
	U rapp [%]	14	24	63	13	27	167	

		Radionucléides						
Echantillon n°	Grandeurs	K-40	Sous-chaîne Ra-226	Pb-210	Sous chaîne Ra-228	Sous chaîne Th-228	Chaîne U-235	Sous chaîne Ac-227
7-B	A [kBq/kg]	531	1776		134	167	17	65
	U [%]	4.3	9		4.4	100	28.4	19
	Rapport	1.12	1.06		1.06	1.10	0.57	1.08
	U rapp [%]	12	14		12	101	167	34
8	A [kBq/kg]	508	1723					
	U [%]	10	10					
	Rapport	1.07	1.03					
	U rapp [%]	15	15					
9	A [kBq/kg]	497.4	1772			95.59		
	U [%]	3.9	3.8			4		
	Rapport	1.04	1.06			0.63		
	U rapp [%]	12	12			18		
10	A [kBq/kg]	511	1991	1012	138	155		77
	U [%]	6.5	8	6	7.2	6		11
	Rapport	1.07	1.19	1.21	1.09	1.02		1.28
	U rapp [%]	13	14	56	14	18		30
11	A [kBq/kg]	520	1700					67
	U [%]	5	3.6					7.4
	Rapport	1.09	1.02					1.12
	U rapp [%]	12	12					21
12-A	A [kBq/kg]	470	1577		119			56
	U [%]	10	17		10			10
	Rapport	0.99	0.94		0.94			0.93
	U rapp [%]	15	20		15			30
12-B	A [kBq/kg]	455.4	1760	811.1	125.9	163		45
	U [%]	10.7	17	10.4	12.2	29		26
	Rapport	0.96	1.05	0.97	0.99	1.08		0.75
	U rapp [%]	15	20	56	17	34		38
13	A [kBq/kg]	462	1748		127	167	22	

		Radionucléides						
Echantillon n°	Grandeurs	K-40	Sous-chaîne Ra-226	Pb-210	Sous chaîne Ra-228	Sous chaîne Th-228	Chaîne U-235	Sous chaîne Ac-227
	U [%]	5	4		4	9	18	
	Rapport	0.97	1.04		1.00	1.10	0.74	
	U rapp [%]	12	12		12	19	165	
14	A [kBq/kg]	510	1440	610	120	145	17	
	U [%]	39	70	39	44	74	72	
	Rapport	1.07	0.86	0.73	0.95	0.96	0.57	
	U rapp [%]	41	71	68	46	76	179	
15-A	A [kBq/kg]	470	1530		120			
	U [%]	7.2	10		10			
	Rapport	0.99	0.91		0.95			
	U rapp [%]	13	15		15			
15-B	A [kBq/kg]	420	1500		120	145	100	56
	U [%]	18.2	22		17.6	23	16	62
	Rapport	0.88	0.90		0.95	0.96	3.34	0.93
	U rapp [%]	21	25		21	29	165	68
16	A [kBq/kg]	448	1614	1462	103.9	144		
	U [%]	8.4	18	15	15	27		
	Rapport	0.94	0.96	1.74	0.82	0.95		
	U rapp [%]	14	21	58	19	32		
17	A [kBq/kg]	465	1705	680	133	158		76
	U [%]	5	9	37	3	13		72
	Rapport	0.98	1.02	0.81	1.05	1.04		1.27
	U rapp [%]	12	14	67	12	22		77
Moyen	ne pondérée	487	1722	882	131	122	19	62
Inc. sur mo	yenne pondérée	55	88	66	54	184	120	116
Moyenne	e arithmétique	476	1674	839	127	152	30	60
Eca	art relatif	8	8	39	8	12	116	20

Figure 1 : Rapport à la moyenne pour tous les radionucléides et participants.

Figure 2 : Rapport à la moyenne pour le K-40 et la sous-chaîne du Ra-226 pour tous les participants.

Figure 3 : Rapport à la moyenne pour le Pb-210 et la sous-chaîne du Ra-228 pour tous les participants.

Figure 4 : Rapport à la moyenne pour la sous-chaîne du Th-228 et de l'U-235 pour tous les participants.

Figure 5 : Rapport à la moyenne pour la sous-chaîne de l'Ac-227 et pour tous les participants.

Conclusions

Dix-neuf laboratoires ont participé à l'intercomparaison 2017 et ont fourni des résultats. Les participants ont démontré une bonne maîtrise de la mesure en spectrométrie gamma de radionucléides naturels. L'activité des principales chaînes a pu être déterminée par tous les participants. Ces résultats démontrent que les laboratoires sont compétents pour mesurer ce type de TENORM.

Remerciements

Les organisateurs tiennent à remercier chaleureusement les participants pour le soin qu'ils ont apporté au bon déroulement de cette campagne de mesure.

Annexe 1

Les séries de radioactivité naturelle U-238, U-235 et Th-232 sont schématisées dans la Figure 6.

Figure 6 : Séries de radioactivité naturelle (Philipp Steinmann, OFSP, réunion intercomparaison gamma, 21.11.2012)

Méthode d'analyse

Les sections suivantes décrivent la méthode et les données nucléaires utilisées pour l'analyse des spectres HPGe avec de la radioactivité naturelle. L'analyse est exécutée avec une bibliothèque de radionucléides naturels dans laquelle les périodes radioactives des radioéléments d'une chaîne de désintégration sont fixées par la période de leur mère respective.

<u>Série U-238</u>

On a relevé de l'U-238 dans les échantillons. La détermination est basée la ligne 63 keV du Th-234 qui peut être supposé à l'équilibre avec U-238, Tableau 10. La ligne 1001 keV de la fille Pa-234m n'est pas observée et ne permet que le calcul d'une limite de détection (assez élevée).

U-234 n'est pas mesurable par spectrométrie gamma. Il n'émet aucune ligne et ses filles Th-230 et Ra-226 ont des périodes trop longues pour qu'on puisse admettre un équilibre radioactif avec lui. On peut considérer en première approximation qu'il serait en abondance isotopique naturelle et que son activité serait proche de celle de U-238. Dans le tableau des résultats, on indique donc la même valeur que pour U-238.

L'activité du Ra-226 a pu être déterminée à partir de la mesure directe du Ra-226 (ligne à 186 keV). Notons que la présence d'U-235 peut affecter cette même ligne, Tableau 11. Le Ra-226 peut aussi être analysé par ses filles Pb-214 et Bi-214 à l'équilibre avec Ra-226 lors de la mesure.

Du Pb-210 est aussi observé dans l'échantillon. Il fait partie de la même série de radioactivité naturelle que Ra-226, mais ici il ne peut pas être considéré comme à l'équilibre radioactif avec lui. On admet en première approximation que les filles de Pb-210 (Bi-210 et Po-210) sont à l'équilibre avec Pb-210 (Tableau 12)

Radionucléide à déterminer	E (keV)	Intensité (%) Inc. (<i>k</i> = 1)	Radionucléide interférant (E / intensité)	Remarque
Th-234	63.30 92.38	3.75(8) 2.18(19)	Th-232 (63.81 / 0.259%)	Autoatténuation Total des 2 lignes :
	92.80	2.15(19)		92.6 keV / 4.33%
Pa-234m	766.36 1001.03	0.323(4) 0.847(8)		

Tableau 10 : Données utilisées pour la détermination de l'uranium-238

Tableau 11 : Données utilisées pour la détermination du radium-226

Radionucléide à déterminer	E (keV)	Intensité (%)	Radionucléide interférant (E / intensité)	Remarque
Ra-226 directe	186.21	3.555(19)	U-235 (185.72 /57.0%)	U-235 déterminé si possible par ses autres lignes
Pb-214	242.00 295.22	7.268(22) 18.414(36)		Filles de Rn-222 à l'équilibre dans
	351.93	35.60(7)	Bi-211 (351.1 / 12.9%)	un récipient étanche
Bi-214	609.31 1120.29 1238.11 1764.50	45.49(19) 14.91(3) 5.831(14) 15.31(5)		et attente de 20 jours environ

Radionucléide à déterminer	E (keV)	Intensité (%) Inc. (<i>k</i> = 1)	Radionucléide interférant (E / intensité)	Remarque
Pb-210 directe	46.54	4.252(40)		Autoatténuation

|--|

Série U-235

L'activité de U-235 peut être estimée par les lignes de 144, 163 et 205 keV, Tableau 13**Erreur ! Source du renvoi introuvable.** Dans le cas de l'uranium naturel, le rapport d'activité U-235/U-238 est de l'ordre de 1/20. Une faible activité de Th-227 est relevée. Ici, on ne peut pas admettre qu'il est déjà à l'équilibre avec sa mère Ac-227, Tableau 14.

Tableau 13 : Données	utilisées pour	la détermination	de l'uranium-235
		a doconnication	

Radionucléide à déterminer	E (keV)	Intensité (%) Inc. (<i>k</i> = 1)	Radionucléide interférant (E / intensité)	Remarque
U-235 directe	143.77	10.94(6)	Ra-223 (144.27 / 3.36%)	
	163.39	5.08(3)		
	185.72	57.0(3)	Ra-226 (186.21 / 3.56%)	
	205.32	5.02(3)		

Tableau 14 : Données utilisées pour la détermination de l'actinium-227

Radionucléide à déterminer	E (keV)	Intensité (%) Inc. (<i>k</i> = 1)	Radionucléide interférant (E / intensité)	Remarque
Th-227	235.96	12.6(6)		
Ra-223	154.21	5.84(13)	Ac-228 (154.0 / 0.7%)	
	269.46	14.23(32)	Ac-228 (270.3 / 3.5%)	
Rn-219	271.23	11.07(22)	Ac-228 (270.3 / 3.5 %)	

Série de Th-232

Le Th-232 n'a pas été relevé dans l'échantillon. Seule la limite de détection est donnée pour Th-232 dans les résultats, évaluée avec sa ligne de 63.8 keV, Tableau 15.

L'activité du Ra-228 a été déterminée à partir de sa fille Ac-228, aisément mesurable. Le Th-232 n'est pas forcément à l'équilibre avec Ra-228, vu la période de ce dernier (5.7 a),

Tableau 15.

L'activité du Th-228 a été déterminée par sa fille Pb-212 (Bi-212 n'est pas observé) en admettant l'équilibre radioactif, Tableau 16. Le TI-208 est aussi observé. Le Ra-224 non ; son unique ligne à 241 keV est masquée par celles de 238.6 keV de Pb-212 et 242.0 keV de Pb-214 (Tableau 17).

Radionucléide à déterminer	E (keV)	Intensité (%) Inc. (<i>k</i> = 1)	Radionucléide interférant (E / intensité)	Remarque
Th-232	63.81	0.259(15)	Th-234 (63.3 / 3.75%)	

Tableau 15 : Données utilisées pour la détermination du thorium-232

Tableau 16 : Données utilisées pour la détermination du radium-228

Radionucléide à déterminer	E (keV)	Intensité (%) Inc. (<i>k</i> = 1)	Radionucléide interférant (E / intensité)	Remarque
Ac-228	209.25	3.97(13)		Sommations
	338.32	11.4(4)	Ra-223 (338.3 / 2.8%)	
	911.20	26.2(8)		
	968.96	15.9(5)		

Tableau 17 : Données utilisées pour la détermination du thorium-228

Radionucléide à déterminer	E (keV)	Intensité (%) Inc. (<i>k</i> = 1)	Radionucléide interférant (E / intensité)	Remarque
Pb-212	238.63	43.6(5)		
	300.09	3.18(14)	Th-227 (300.0 / 2.7%)	Perte de Rn-220 ?
			Pa-231 (300.1 / 2.5%)	
Bi-212	727.33	6.65(4)		
TI-208	277.37 583.19	6.6(3) 85.0(3)	Ac-228 (279.0 / 0.2%) Ac-228 (583.4 / 0.1%)	35.93% embranch. Sommations
	860.53	12.4(1)		
	2614.51	99.755(4)		