

RAPPORT

INTERCOMPARAISON 2008 EN SPECTROMÉTRIE GAMMA SUR DES ÉCHANTILLONS DE L'ENVIRONNEMENT

Auteurs :	Claude	Bailat,	Thierry	Buchillier,	Yvan	Caffari,	Youcef	Nedjadi,
	Sandrine	e Zuffere	y, Sybille	Estier et Fra	ançois E	Bochud		
Version :	17.10.20	08						

Sommaire

1.	Introduction	1
2.	Chronologie de la campagne	4
3.	Composition des sources	4
	3.1.1. Confection des sources	4
4.	Équipement et méthodes des laboratoires	9
5.	Résultats et discussion	
5.	1. Concentrations radioactives	13
	5.1.1. Concentrations radioactives de K-40 et Cs-137	16
	5.1.2. Concentrations radioactives d'autres éléments	20
6.	Conclusion	
7.	Remerciements	22

1. Introduction

L'Institut universitaire de radiophysique (IRA) est mandaté par l'Office fédéral de métrologie (METAS) pour la détermination et la diffusion de l'unité d'activité. La Section de la radioactivité de l'environnement (URA) de l'Office fédéral de la santé publique (OFSP) est responsable de la surveillance de la radioactivité dans l'environnement.

Cette année, l'IRA et la URA ont proposé à l'ensemble des laboratoires effectuant des mesures d'activité dans l'environnement et les produits de consommation de participer à une intercomparaison de spectrométrie gamma. Le thème est la mesure d'échantillons de l'environnement et de matériaux de construction. L'échantillon choisi est composé de cendres d'un chauffage au bois, car celles-ci présentent un spectre intéressant et bien mesurable. Cet échantillon permet de mettre à l'épreuve les bibliothèques utilisées pour les mesures dans l'environnement. D'un point de vue pratique, les cendres sont un matériau de construction pour faire du béton en produisant moins de CO_2 et sont donc régulièrement utilisées. Des mesures de radioprotection seront également nécessaire, car certaines études internationales ont pu mettre en évidence une augmentation de la dose annuelle des personnes dans des bâtiments dont la construction a fait appel à des cendres.

Sur les 24 laboratoires suisses concernés par ce type de mesure, 18 ont participé (voir Tableau 1), ainsi que le laboratoire de métrologie de l'IRA.

Nom	Adresse	Tél.	Email
Mario Burger	Bundesamt für Bevölkerungsschutz des VBS Labor Spiez 3700 Spiez	033 228 14 00	mario.burger@babs.admin.ch
Pavol Vojtyla	CERN Safety Commission 1211 Genève 23	022 767 38 93	pavol.vojtyla@cern.ch
Susanne Pfenninger	Kantonales Laboratorium ZH Fehrenstrasse 15 8032 Zürich	043 244 71 41	susanne.pfenninger@klzh.ch
Jost Eikenberg	Paul Scherrer Institut Abteilung für Strahlenschutz und Sicherheit 5232 Villigen - PSI	056 310 23 40	jost.eikenberg@psi.ch
Gilles Triscone	EIG Laboratoire de Physique Nucléaire Rue de la Prairie 4 1202 Genève	022 546 25 26	gilles.triscone@hesge.ch
Thomas Kaufmann	Dienststelle Lebensmittelkontrolle und Verbraucherschutz (DLV) Analytik/Qualitätssicherung Vonmattstrasse 16 6002 Luzern	041 248 84 05	thomas.kaufmann1@lu.ch
Max Haller	BKW FMB Energie AG Kernkraftwerk Mühleberg Ressort Chemie 3203 Mühleberg	031 754 76 28	max.haller@bkw-fmb.ch
Claudine Bajo	Kanton Aargau Amt für Verbraucherschutz Obere Vorstadt 14 5000 Aarau	062 835 30 22	claudine.bajo@ag.ch
Markus Zehringer	Kantonales Laboratorium BS Kannenfeldstrasse 2 Postfach 4012 Basel	061 385 25 17	markus.zehringer@bs.ch
Andreas Leupin	Haubtabteilung für die Sicherheit der Kernanlagen Abt. Strahlenschutz 5232 Villigen - HSK	056 310 39 32	andreas.leupin@hsk.ch

Tableau 1 : Participants à l'intercomparaison 2008.

Nom	Adresse	Tél.	Email
Marian Fujak	EAWAG SURF Ueberlandstrasse 133 Postfach 611 8600 Dübendorf	044 823 51 18	marian.fujak@eawag.ch
Patrick Franz	Kernkraftwerk Beznau Chemielabor 5312 Döttingen	056 266 73 18	patrick.franz@nok.ch
Jean-Luc Loizeau	Université de Genève Institut F.A. Forel Rte de Suisse 10 1290 Versoix	022 950 97 21	jean-luc.loizeau@terre.unige.ch
Sergio Giannini	SUVA Sektion Physik Rösslimattstrasse 39 6005 Luzern	041 419 53 41	sergio.giannini@suva.ch
Sybille Estier	OFSP Section Radioactivité de l'environnement Schwartzenburgstr. 165 3097 Bern-Liebfeld	031 325 19 10	sybille.estier@bag.admin.ch
Nicola Solcà	Laboratorio cantonale Via Mirasole 22 6500 Bellinzona	091 814 61 11	nicola.solca@ti.ch
Dietmar Baumann	Amt für Lebensmittelsicherheit und Tiergesundheit GR Planaterrastrasse 11 7001 Chur	081 257 26 24	dietmar.baumann@alt.gr.ch
Pascal Froidevaux	Institut de radiophysique appliquée Groupe de Surveillance de l'Environnement Grand-Pré 1 1007 Lausanne	021 623 34 80	pascal.froidevaux@chuv.ch

2. Chronologie de la campagne

La chronologie de la campagne est rappelée dans le Tableau 2.

Date	Événement							
14 avril	Circulaire d'invitation, avec délai de réponse au 8 juin 2006							
2 juillet	Envoi des échantillons aux participants, avec délai de réponse au 1 ^{er} septembre 2006							
1 ^{er} septembre	Réception du dernier résultat							
17 octobre	Distribution du présent rapport aux participants							
11 novembre	Réunion de discussion relative à cette intercomparaison							

Tableau 2 : Chronologie de la campagne

3. Composition des sources

3.1.1. Confection des sources

Les échantillons de cette intercomparaison ont été préparés par les soins de l'IRA. Chaque participant a reçu un récipient étanche en polyéthylène d'environ 500 ml de type Semadeni-1742 contenant 350 g de cendres de bois. Ces cendres ont été produites par un chauffage à bois durant le mois de mai et proviennent de la région de Puidoux-Village à une altitude de 700 m, voir Figure 1. Elles se composent en principe de carbonate de calcium et de potassium, ainsi que d'oxyde de magnésium.

Figure 1 : Origine géographique du bois utilisé pour produire les cendres.

Les cendres ont été collectées en mai et juin, puis tamisées à 1 mm. La perte de masse est importante, d'un facteur 3 environ. Ensuite, 24 échantillons ont été préparés en tassant les cendres afin d'obtenir une quantité de matière suffisante. Le Tableau 3 indique les masses et tares des 18 échantillons envoyés aux participants.

NIO	Tare	Masse			
19	[g]	[g]			
1	53.29	350.00			
2	53.23	350.00			
3	53.73	350.00			
4	53.53	350.00			
5	53.54	350.00			
6	53.60	350.00			
7	53.69	350.00			
8	53.22	350.00			
9	53.45	350.00			
10	53.38	350.00			
11	53.35	350.00			
12	53.11	350.00			
13	53.44	350.00			
14	53.26	350.00			
15	53.28	350.00			
16	53.34	350.00			
17	53.80	350.00			
18	53.48	350.00			

Tableau 3 : Masse et tare des contenants des échantillons. L'incertitude (k=2) est de 0.01 g.

Les échantillons individuels ont été finalement mesurés pour contrôle par spectrométrie gamma. Ces mesures ne représentent pas des mesures de référence, mais de contrôle, car elles ne seront pas prises comme valeurs de référence. Le Tableau 5 présente les activités par radionucléide et par échantillon corrigées pour l'autoatténuation. En effet, l'autoatténuation du rayonnement gamma dans les cendres est différente de celle dans la solution aqueuse utilisée pour l'étalonnage du détecteur. Pour corriger cet effet, les valeurs d'activité rapportées par le logiciel d'analyse ont été multipliées par des facteurs de correction déterminés par simulation MC pour le détecteur et la géométrie utilisés (Tableau 4). Pour simplifier, ces corrections n'ont été déterminées qu'à l'énergie de la principale ligne gamma. L'incertitude de cette correction est estimée à 3 % (mais 10 % pour le Pb-210 à 47 keV).

Radionucléide	Energie [keV]	F _{corr}
K-40	1461	0.95
Cs-137	662	0.93
Ra-226	186	0.91
Pb-214	352	0.92
Bi-214	609	0.93
Ac-228	911	0.93
Pb-212	239	0.91
T1-208	583	0.93
Pb-210	47	1.17

Tableau 4 : Facteur de correction estimés pour la correction d'autoatténuation dans des cendres de bois et pour un récipient Semadeni 500 ml.

Les mesures de contrôle ont été réalisées avant l'envoi des échantillons, en utilisant le même détecteur, et donc dans les mêmes conditions. La Figure 2 synthétise ces résultats de manière graphique. On peut remarquer que malgré la difficulté d'obtenir des échantillons homogènes, les différents pots sont compatibles à deux sigma.

Un échantillon test a été mesuré à nouveau après avoir été scellé durant un mois afin de voir si l'activité de Ra-226 et de ses filles (Pb-214 et Bi-214) est à l'équilibre. Le rapport entre l'activité mesurée au temps zéro et un mois après est inscrit dans le Tableau 6. Aucun effet qui dépasse l'incertitude de mesure n'a pu être mis en évidence. Ceci s'explique par le fait que la première mesure a été réalisée environ 1 mois après le remplissage du récipient et que celui-ci est déjà bien étanche au radon. Le scellage supplémentaire du récipient ne s'avère donc pas indispensable.

Nucléides	N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Moy.	Ect.	Ect. rel.
K-40	[Bq/kg]	2643	2784	2675	2734	2722	2583	2859	2914	2872	2969	2908	2934	2827	2888	2817	2746	2646	2584	2784	122	4.4%
U	[%]	54	50	54	55	82	52	51	58	57	59	58	50	57	61	56	55	48	52			
Cs-137	[Bq/kg]	10	11	11	10	11	10	12	11	11	11	12	12	12	12	12	11	10	9	12	1	8.2%
U	[%]	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1			
Pb-214	[Bq/kg]	118	126	122	124	129	118	132	137	133	143	129	138	133	137	132	127	118	118	129	8	6.0%
U	[%]	2	1	2	2	2	2	1	2	2	2	2	1	2	2	2	2	1	2			
Bi-214	[Bq/kg]	100	110	104	107	108	99	114	114	114	118	115	118	118	115	114	109	102	101	110	7	6.0%
U	[%]	2	2	2	2	2	2	2	3	3	2	3	2	2	3	2	2	2	2			
Ac-228	[Bq/kg]	40	43	41	42	44	38	44	47	45	45	46	48	45	46	45	45	39	38	43	3	7.1%
U	[%]	2	1	2	2	2	2	1	2	2	2	2	1	2	2	2	2	1	2			
Pb-212	[Bq/kg]	48	53	49	51	52	47	54	56	55	58	56	57	53	57	55	53	46	48	53	4	7.1%
U	[%]	2	1	2	2	2	2	1	2	2	2	2	1	2	2	2	2	1	2			
Tl-208	[Bq/kg]	16	16	15	17	17	14	17	17	16	18	18	18	18	17	18	16	15	14	16	1	8.2%
U	[%]	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Ra-226	[Bq/kg]	124	123	120	121	118	118	134	130	137	133	129	144	134	122	127	122	124	124	127	7	5.7%
U	[%]	11	7	11	11	11	10	7	11	12	11	11	7	11	12	11	11	7	11			
Pb-210	[Bq/kg]	27	26	34	37	25	24	28	30	29	16	20	28	29	27	28	22	33	23	27	5	18.7%
U	[%]	10	7	11	11	11	10	7	10	11	10	10	6	11	11	11	10	7	10			

Tableau 5 : Activités par radionucléide et échantillon obtenues durant la mesure de contrôle réalisée avant l'envoi des échantillons. U désigne l'incertitude à 95%.

Figure 2 : Activités par radionucléide et par échantillon obtenues par la mesure de contrôle de l'homogénéité des échantillons. Les droites représentent les moyennes arithmétiques et leurs écarttypes.

Nucléides	Unités	Rapport
K-40	[Bq/kg]	1.002
U	[%]	2.7
Cs-137	[Bq/kg]	0.989
U	[%]	9.7
Pb-214	[Bq/kg]	1.008
U	[%]	1.9
Bi-214	[Bq/kg]	1.025
U	[%]	3
Ac-228	[Bq/kg]	1.055
U	[%]	6.8
Pb-212	[Bq/kg]	1.005
U	[%]	4.4
T1-208	[Bq/kg]	1.006
U	[%]	7
Ra-226	[Bq/kg]	1.048
U	[%]	11.4
Pb-210	[Bq/kg]	0.891
U	[%]	57.5

Tableau 6 : Etude de l'effet de l'équilibre mère-filles dans l'échantillon. Rapport des activités obtenues à un mois d'intervalle avec l'échantillon n° 20. U désigne l'incertitude à 95%.

4. Équipement et méthodes des laboratoires

Le Tableau 7 résume les équipements utilisés par les participants et le Tableau 8 les méthodes d'analyse.

Laboratoires	Détecteur	Mise en fonction	ε [%]	Logiciel	Étalonnage, type	date
Abteilung für Strahlenschutz und Sicherheit, PSI	HPGe type p Eurisys IGPC20	1998	30	InterWinner ver. 5.0	Amersham	2003
EAWAG, SURF, Dübendorf	Ge-Bohrloch GCW 3523-7915 p-type	1991	30	InterWinner ver. 5.0	QCBYB 9120	2008
Institut de radiophysique appliquée, Groupe de Surveillance de l'Environnement	HPGe type p Canberra GEM 23185	2001	23.4	Genie 2000 Ver. 1.4	IRA	2004
Kantonales Laboratorium Basel	HPGe type p Eurisys IGPC28-18-r	1998	23.7/28	Winner ver. 6.0	IRA	1993
SUVA, Sektion Physik	HPGe type p Ortec EGC 20R	1989	20	Winner ver. 6.0	Czeck Metrological Institute	2006
Labor Spiez	HPGe type n Canberra GR 2019	1998	20	Genie VMS	AEA Technology, Amersham	2003
Kantonales Laboratorium Zürich	HPGe type p PGT IGC25	1989	25.3	InterGamma ver. 5.05	IRA	2000
EIG Laboratoire de physique nucléaire	HPGe à puits type p Eurisys EGPC 155 P15	1997	32	InterWinner ver. 5.0	IRA et DAMRI	2000
Université de Genève, Institut F.A. Forel	HPGe à puits type p Ortec GWL 110230	1985	?	Gamma Vision ver. 5.1	IRA	2000
CERN, Safety Commission	HPGe type n Canberra GX 5019	2004	58.8	Genie 2000 Ver. 2 .1	caractérisation Labsocs	2004
Kantonales Laboratorium Aarau	HPGe type p PGT IGC27	1989	27.7	InterWinner ver. 5	IRA	2000
Amt für Lebensmittel- kontrolle und Verbraucherschutz, Luzern	HPGe type n Intertechnique EGPC25	1990	25.8	InterWinner ver. 5.05	IRA	2000
OFSP, Section Radioactivité de l'environnement	HPGe type p Ortec GMX30P+	2008	30	Interwinner 5.0 et Winner 6.0	Czeck Metrological Institute	2008
Amt für Lebensmittelsicherheit und Tiergesundheit GR	HPGe type p Ortec GEM-25P4	2005	25	InterWinner ver.5.05	?	2008

Tableau 7 : Résumé des équipements des différents laboratoires.

Laboratoires	Détecteur	Mise en fonction	ε [%]	Logiciel	Étalonnage, type	date
Kernkraftwerk Beznau	HPGe type p Canberra GC3018	1999	30	Interwinner ver. 4.1	Ba-133/Eu-152	2000
HSK, Abteilung Strahlenschutz	HPGe type p PGT IGC22	1987	22	Winner ver. 6.0	Amersham	2005
BKW FMB Energie AG Kernkraftwerk Mühleberg	Ortec Pp Tp		10	Interwinner ver. 5.0	IRA	2007
Laboratorio cantonale Bellinzona	Ortec GEM30	2003	30	Interwinner ver. 5.0	Czeck Metrological Institute	2006

Laboratoires	Volume [ml]	Type de récipient	Distance [mm]	Corr de somm.
Abteilung für Strahlenschutz und Sicherheit, PSI	50	Weithalsbehaelter (à large ouverture)	sur le détecteur	non
EAWAG, SURF, Dübendorf	60	Cyl. 72 mm x 14 mm	?	Non
Institut de radiophysique appliquée, Groupe de Surveillance de l'Environnement	500	Semadeni 1742	sur le détecteur	Non
Kantonales Laboratorium Basel	500	Semadeni	sur le détecteur	Non
SUVA, Sektion Physik	500	Semadeni (95 mm x 95 mm)	sur le détecteur	non
Labor Spiez	250	1/4L Spiez (Cyl. : 91.2 mm / 38 mm / 250 ml)	60	non, corr. d'autoabsorption d'après XRF
Kantonales Laboratorium Zürich	500	Semadeni	sur le détecteur	non
EIG Laboratoire de physique nucléaire	50	CEA Type E	6	Non
Université de Genève, Institut F.A. Forel	5.8	Tube en verre (12 mm x 50 mm)	dans le puits	Non
CERN, Safety Commission	500	Semadeni 1742 et 1713 (pour Pb-210)	3	Non
Kantonales Laboratorium Aarau	500	Semadeni	sur le détecteur	Non
Amt für Lebensmittel-kontrolle und Verbraucherschutz, Luzern	548	Cyl. 79 mm x 9.4 mm	sur le détecteur	Non
OFSP, Section Radioactivité de l'environnement	77	Cyl. (64 mm x 24 mm)	sur le détecteur	Oui, Gespecor
Amt für Lebensmittelsicherheit und Tiergesundheit GR	500	Semadeni	sur le détecteur	non
Kernkraftwerk Beznau	50	Cyl. 45 mm x 31 mm	sur le détecteur	non
HSK, Abteilung Strahlenschutz	1000	Boîte cylindrique	sur le détecteur	non
BKW FMB Energie AG Kernkraftwerk Mühleberg	500	Semadeni	25	non
Laboratorio cantonale Bellinzona	250	Semadeni	sur le détecteur	non

Tableau 8 : Résumé des méthodes d'analyse des différents laboratoires.

5. Résultats et discussion

Les participants ont utilisé leur rapport courant de présentation des résultats ou simplement la feuille distribuée avec les échantillons. Les rapports de mesure du logiciel ajoutés au formulaire sont clairement rédigés et présentent les données utiles. Le logiciel d'analyse des spectres le plus usité est InterWinner/Winner et seuls quatre participants utilisent un autre produit.

Tous les laboratoires ont identifié correctement les radionucléides principaux de l'échantillon et ont indiqué leur concentration radioactive correspondante. Deux laboratoires, le 4 et le 8, ont spécifié qu'ils n'étaient pas spécialistes en mesure d'échantillon contenant des radioisotopes naturels. Le laboratoire 16 a remis les résultats de la moyenne de 3 échantillons, mais le Pb-210 n'a pu être quantifié par manque de reproductibilité. Le laboratoire 18 a précisé que les calculs ont été réalisés en supposant un équilibre mère-fille. Le laboratoire 4 a donné des résultats incohérents entre la feuille de calcul et le rapport de résultat, que nous avons dû interpréter en prenant le rapport de mesure.

5.1. Concentrations radioactives

Le Tableau 9 présente l'ensemble des valeurs telles qu'elles ont été rapportées par les laboratoires. La majorité des laboratoires ont indiqué une incertitude de mesure sur leur rapport. Néanmoins, certains laboratoires n'ont pas précisé le facteur d'élargissement (k) retenu. Dans le doute, nous avons estimé que le facteur d'élargissement était de k=1. Certains résultats ont été fournis sans incertitude. Quand le rapport de mesure était fourni avec le formulaire, nous avons reporté l'incertitude calculée par le programme d'analyse.

N	Cs-137	U	K-40	U	Pb-210	U	Ra-226	U	Autres	Autres	U	k
11	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	Nucl.	[Bq/g]	[Bq/g]	ĸ
1	0.011	0.003	3.2	0.3	-	-	0.11	0.01	Ra- 228	0.045	0.009	?
									Ac- 228	0.0519	0.0026	
									Pb-212	20.0483	0.0029	
2	0.0119	0.0009	3.0	0.16	0.054	0.016	0.122	0.012	T1-208	0.0168	0.0009	1
									Bi-214	0.125	0.006	
									Pb-214	0.12	0.006	
3	0.00958	0.00069	2.57	0.13	0.053	0.022	0.102	0.008	?	0.0048	0.0011	2
									Tl-208	4.6	0.601528	
									Pb-212	20.08123	30.008795	
									Bi-214	3.69	0.311275	
4	0.00793	0.00138	2.52	0.231	0.0275	0.013	0.0965	0.021	Pb-214	4.559	0.400155	2
									Rn- 222	5.604	1.694559	
									Ac- 228	0.03463	30.004018	
5	0.011	0.00055	3.005	0.15025	-	-	-	-	Cd- 109	0.164	0.0082	2
									Th- 232	0.039	0.006	
6	0.00911	0.0024	2.7	0.6	-	-	-	-	Ra- 226 seul	0.11	0.02	2
									Bi-214			
									Pb-214	0.125	0.008	
									Ra- 224	0.052	0.002	
7	0.012	0.0006	3.09	0.09	<0.3	-	0.125	0.008	Ra- 228	0.043	0.002	?
									Th- 228	0.052	0.002	
									Ra- 226 seul	0.126	0.007	
8	0.01		3.13				0.18					?
9	0.0116	0.00116	3.05	0.305								2
									Pb-214	8.02		
10	0.0133		3.46		_	_	0.153		Bi-214	6.46		?
- 0									Th- 228	0.0717		

Tableau 9 : Ensemble des résultats bruts communiqués par chaque laboratoire. U : incertitude.

N° <mark>Cs-137</mark> [Bq/g]	U [Bq/g]	K-40 [Bq/g]	U [Bq/g]	Pb-210 [Bq/g]	U [Bq/g]	Ra-226 [Bq/g]	U [Bq/g]	Autres Nucl.	s Autres [Bq/g]	U [Bq/g]	k
11 0.01217	0.0016	3.761	0.439	-	-	0.1343	0.0124	Ra- 228	0.04883	80.00577	2
12 0.0155	0.00161	3.53	0.0833			0.140	0.0042	Th- 232	0.0590		1
		3.25	0.107			0.153		Bi-214	0.135	0.0068	
13 0.012110	0.00139						0.0249	Pb-214	0.138	0.0065	?
							Th- 232	0.0832	0.01123		
14 0.0122	0.0014	3.06	0.35	0.0300	0.014	0.13	0.018	Ac- 228	0.045	0.0055	2
15 0.0119	0.0014	3.232	0.197								2
16 0.010910	0.0011	3.40	0.08								2
17 0.01		3.9									?
								Pb-214	0.111	0.002	
	0.0003 2.78 0.06							Bi-214	0.108	0.002	
								Th- 232	0.041	0.001	
18 0.0101		0.06	_	-	0.13	0.01	Ac- 228	0.041	0.001	2	
								Ra- 224	0.031	0.006	
								Pb-212	20.047	0.001	
								Bi-212	0.049	0.004	
								Tl-208	0.016	0.001	

5.1.1. Concentrations radioactives de K-40 et Cs-137

Les radionucléides les plus aisés à mesurer sont le Cs-137 et K-40. De manière à comparer les différents laboratoires en absolu, les données brutes de la concentration de Cs-137 et K-40 ont été mises en forme en choisissant le facteur d'élargissement égal à 2, voir Tableau 10.

N°	Cs-137	U (k=2)	K-40	U (k=2)	
	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	
1	0.011	0.006	3.2	0.6	
2	0.0119	0.0018	3	0.32	
3	0.00958	0.00069	2.57	0.13	
4	0.00793	0.00138	2.522	0.2308	
5	0.011	0.0006	3.005	0.1503	
6	0.0091	0.0024	2.7	0.6	
7	0.012	0.0012	3.09	0.18	
8	0.01	0	3.13	0	
9	0.0116	0.00116	3.05	0.305	
10	0.0133	0	3.46	0	
11	0.0122	0.0016	3.761	0.439	
12	0.0155	0.0032	3.53	0.17	
13	0.0121	0.0028	3.25	0.214	
14	0.0122	0.0014	3.06	0.35	
15	0.0119	0.0014	3.232	0.197	
16	0.0109	0.0011	3.4	0.08	
17	0.01	0	3.9	0	
18	0.0101	0.0003	2.78	0.06	

Tableau 10 : Concentrations radioactives du Cs-137 et K-40.

La Figure 3 montre les valeurs de concentrations radioactives pour chaque laboratoire, ainsi que la moyenne arithmétique et son écart-type. La moyenne arithmétique de la concentration radioactive de K-40 est égale à 3.15 ± 0.38 Bq/g et à 0.0112 ± 0.0017 Bq/g pour le Cs-137. Dans le cadre d'intercomparaisons organisées par le bureau des poids et mesures (BIPM), la moyenne arithmétique des résultats des laboratoires est identifiée par l'acronyme KCRV (Key Comparison Reference Value). La moyenne arithmétique est choisie, car elle ne favorise pas les laboratoires ayant sous-estimé l'incertitude, ce qui serait le cas d'une moyenne pondérée. La médiane n'amène pas d'informations supplémentaires dans notre cas, car les valeurs des laboratoires ne présentent pas de cas extrême; elle vaudrait 3.11 Bq/g et 0.0113 Bq/g pour respectivement le K-40 et le Cs-137.

Comme cette intercomparaison n'est pas faite sur la base d'un échantillon de référence mesuré par le laboratoire primaire de l'IRA, la valeur de référence est la KCRV. Trois laboratoires ne sont pas compatibles avec la KCRV du K-40 à un écart-type, par contre seul un laboratoire est incompatible avec la KCRV du Cs-137. Ces résultats sont donc très bons, surtout en remarquant que tous les résultats sont compatibles à deux écart-types et que la plupart reste à 20 % de la KCRV. De manière surprenante, malgré des préparations ou conteneurs différents, les résultats restent donc très compatibles. Ceci montre que les différents laboratoire suivent une méthodologie similaire. En effet, dans des comparaisons internationales, le laboratoire ayant une méthodologie singulière tend à sortir du lot et ceci même si la valeur obtenue est plus proche de la valeur vraie. De plus, tous les laboratoires n'ont pas fait de correction d'autoabsorption, ce qui ajoute une erreur de l'ordre de 5 %.

Figure 3 : Valeurs de la concentration radioactive de Cs-137 à droite et K-40 à gauche de chaque laboratoire. Les barres d'incertitudes représentent une incertitude élargie à k=2. Les droites représentent la moyenne arithmétique et son écart-type.

Afin de déterminer si l'inhomogénéité de l'activité spécifique des échantillons est une cause de dispersion, nous avons calculé une activité normalisée en nous aidant de la mesure de contrôle effectuée avant l'envoi des échantillons. En divisant la valeur d'activité donnée par les participants par la valeur de l'activité de K-40 obtenue avant l'envoi, on obtient des valeurs normalisées et sans unité, qui devraient compenser les effets de l'inhomogénéité inter-échantillons. La Figure 4 montre les valeurs de concentration radioactive normalisées de chaque laboratoire et ceci pour le K-40 et le Cs-137. On voit que le changement n'est pas drastique. L'écart-type relatif est passé de 12 % à 11 % pour le K-40 et de 15 % à 12 % pour le Cs-137. Ceci montre que les différences constatées entre les différents participants ne peuvent s'expliquer par les échantillons, mais plutôt par la méthodologie utilisée.

Figure 4 : Valeurs de la concentration radioactive normalisée de Cs-137 à droite et K-40 à gauche de chaque laboratoire. Les barres d'incertitudes représentent une incertitude élargie à k=2. Les droites représentent la moyenne arithmétique et son écart-type.

En respectant les procédures du BIPM, la compatibilité des mesures est exprimée par un degré d'équivalence. Le degré d'équivalence de chaque valeur de mesure est exprimé quantitativement par deux termes : l'écart de sa valeur à celle de référence de la comparaison clé, appelé degré d'équivalence D, et l'incertitude de cet écart U_D à un niveau de confiance de 95 % (k=2). Le degré d'équivalence du laboratoire i s'écrit donc :

$$D_i = A_i - KCRV$$

avec A_i étant la valeur de concentration radioactive mesurée par le laboratoire i. L'incertitude sur cette valeur s'écrit :

$$U_{D_{i}}^{2} = 4 \cdot \left(\left(1 - \frac{2}{n} \right) \cdot U_{A_{i}} + \frac{1}{n^{2}} \cdot \sum_{j=1}^{n} U_{A_{j}}^{2} \right)$$

avec U_{Ai} l'incertitude sur A_i et n le nombre de laboratoires participant, pour les détails des équations voir les "Final Report" du BIPM sur "www.bipm.org". La Figure 5 synthétise les degrés d'équivalence des valeurs de chaque laboratoire pour le K-40 et Cs-137 et le Tableau 11 tabule ces valeurs. Les laboratoires 8, 10 et 17 n'ont pas fourni d'incertitude et diminuent ainsi leur possibilité de compatibilité.

Figure 5 : Degré d'équivalence pour la concentration radioactive du K-40 et Cs-137. Les barres d'incertitudes représentent l'incertitude sur le degré d'équivalence à k=2.

N٥	D _{K-40}	UD _{K-40}	D _{Cs-137}	UD _{Cs-137}	
19	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	
1	0.05	0.20	0.000	0.011	
2	-0.15	0.32	0.000	0.004	
3	-0.58	1.10	-0.002	0.002	
4	-0.63	1.19	-0.003	0.003	
7	-0.14	0.32	0.000	0.001	
8	-0.45	0.86	-0.002	0.005	
10	-0.06	0.20	0.001	0.003	
11	-0.02	0.17	-0.001	0.001	
12	-0.10	0.25	0.000	0.002	
13	0.31	0.61	0.002	0.001	
14	0.61	1.17	0.001	0.003	
18	0.38	0.74	0.004	0.006	

Tableau 11 : Degré d'équivalence (D) pour la concentration radioactive du K-40 et Cs-137 et son incertitude (U) à k=2.

5.1.2. Concentrations radioactives d'autres éléments

Les différents laboratoires ont identifié 15 radionucléides répartis de la manière suivante :

- o 12 laboratoires ont détecté du Ra-226
- o 6 laboratoires ont détecté du Pb-214
- o 5 laboratoires ont détecté du Bi-214
- o 4 laboratoires ont détecté du Pb-210, Th-232 et Ac-228
- o 3 laboratoires ont détecté du Ra-228, Ra-226 direct/seul, Pb-212 et Tl-208
- o 2 laboratoires ont détecté du Ra-224, Ra-228 et Th-228
- o 1 seul laboratoire a détecté Rn-222 et Cd-109

Le Ra-226 est effectivement bien présent dans l'échantillon et peut être quantifié grâce à la ligne à 186 keV. Le pic à cette énergie contient aussi la contribution de U-235, mais on peut admettre qu'il n'y a quasiment pas d'uranium et attribuer entièrement le pic au Ra-226 et non pas à U-235. En effet, le radium est, comme le calcium, un élément alcalino-terreux qui passe beaucoup plus facilement du sol dans les arbres que l'uranium.

Les filles du Ra-226 sont aussi présentes dans l'échantillon et l'équilibre radioactif est atteint si le récipient est étanche et fermé depuis suffisamment longtemps (environ 10 périodes du gaz Rn-222, c'est-à-dire 1 mois). Ceci est vrai en particulier pour le Pb-214 et le Bi-214. Quatre laboratoires ont donné une estimation correcte de ces radionucléides et deux laboratoires ont donné des valeurs erronées (facteur 30 à 50).

Le Pb-210, qui provient des filles du Rn-222 dans l'atmosphère et dans le sol, est aussi présent dans les cendres de bois. La détermination de son activité est assez difficile, d'une part parce qu'il est présent dans le bruit de fond des détecteurs, et d'autre part parce que l'énergie de son unique gamma est faible (46 keV), ce qui est souvent en dessous des courbes d'étalonnage en efficacité et ce qui rend plus difficile l'estimation de la correction pour l'autoatténuation dans les cendres.

Le Th-232, par contre, ne se trouve pas en quantité directement mesurable par spectrométrie gamma, l'intensité de ses lignes étant beaucoup trop faible. L'activité de sa fille directe, le Ra-228, peut être déterminée par celle de l'Ac-228 (6.1 h) en équilibre radioactif. On ne peut cependant pas admettre sans autre que le Th-232 est aussi à l'équilibre avec elles.

Le Pb-212 et le Tl-208 font partie de cette même famille du Th-232. L'activité du Th-208 et celles de toutes ses filles (Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Po-212 et Tl-208) sont identiques car leurs périodes sont courtes. Notons qu'il faut tenir compte du facteur d'embranchement de 36.2% pour le Tl-208.

Enfin, on n'attend pas de Cd-109 dans un tel échantillon. L'annonce de celui-ci par l'un des participants provient vraisemblablement d'une erreur d'attribution du pic de fluorescence X du plomb à 87.4 keV, contre 88.0 keV pour le gamma du Cd-109.

Les résultats pour le Ra-226 sont résumés dans le Tableau 12. La Figure 6 montre les valeurs de concentrations radioactives obtenues par chaque laboratoire, ainsi que la moyenne arithmétique et son écart type. La moyenne arithmétique de la concentration radioactive de Ra-226 est égale à 0.131 ± 0.021 Bq/g. Toutes les mesures sont compatibles à 2 sigma et une seule mesure est audelà de une fois sigma.

N°	Ra-226 [Bq/g]	U (k=2) [Bq/g]	D _{Ra-226} [Bq/g]	UD _{Ra-226} [Bq/g]	
1	0.11	0.01	-0.0213	0.02027	
2	0.122	0.024	-0.0093	0.04586	
3	0.102	0.008	-0.0293	0.01682	
4	0.096	0.021	-0.0348	0.04031	
7	0.125	0.016	-0.0063	0.03107	
8	0.18	0	0.0487	0.00744	
10	0.153	0	0.0217	0.00744	
11	0.134	0.012	0.0030	0.02454	
12	0.14	0.008	0.0087	0.01745	
13	0.15	0.05	0.0217	0.09457	
14	0.13	0.018	-0.0013	0.03475	
18	0.13	0.01	-0.0013	0.02027	

Tableau 12 : Concentrations radioactives du Ra-226.

Figure 6 : Valeurs de la concentration radioactive du Ra-226 de chaque laboratoire à gauche. Les barres d'incertitudes représentent une incertitude élargie à k=2. Les droites représentent la moyenne arithmétique et son écart type. Le degré d'équivalence pour la concentration radioactive du Ra-226 est représenté à droite. Les barres d'incertitudes représentent l'incertitude sur le degré d'équivalence à k=2.

Les KCRV obtenues pour les radionucléides détectés par plus de trois laboratoires ont été calculées et sont représentées dans la Figure 7. Les 2 résultats inattendus du Pb-214 et Bi-214 n'ont pas été pris en considération pour le calcul de la KCRV (labo 4 et 10). Par ce biais, nous obtenons donc une analyse de la composition radioactive de ces cendres. La plus grande contribution reste le K-40, suivie du Ra-226, Pb-214 et Bi-214. La valeur de KCRV du Cs-137 reste en dessous du Ra-226 et de ses filles. En comparaison avec des mesures publiées, la hiérarchie des KCRV des différents radionucléides et l'ordre de grandeur des valeurs sont comparables, à l'exception de la concentration en Cs-137 qui est beaucoup plus basse dans notre cas (voir M.J. Anagnostakis et al., Applied Radiation and Isotopes 61 (2004) 381-388).

Figure 7 : Valeurs de la KCRV pour les radionucléides trouvés par plus de 3 laboratoires. Les barres d'incertitudes représentent une incertitude élargie à k=2.

6. Conclusion

Cette année, l'intercomparaison était d'un type différent, mais elle a tout de même suscité un fort intérêt. Les 18 laboratoires ont identifié les radionucléides principaux de l'échantillon. Les résultats sont donc bons et les valeurs fournies par les laboratoires majoritairement compatibles, ce qui dénote une bonne maîtrise des outils de travail des participants. La forme des rapports de mesure est acceptable, mais dans certains cas, il faudrait tout de même indiquer la valeur et le type d'incertitude utilisée. Le degré d'équivalence des différents laboratoires est bon et ceci surtout en tenant compte de l'inhomogénéité des échantillons envoyés.

7. Remerciements

Les organisateurs tiennent à remercier chaleureusement les participants pour le soin qu'ils ont apporté au bon déroulement de cette campagne de mesure.