IRA
Institut universitaire de radiophysique appliquée

OFMET

Office fédéral de métrologie

Campagne 2000

auprès des laboratoires suisses mesurant la radioactivité dans l'environnement

Marc Décombaz, Jean-Christophe Gostely, Jean-Jacques Gostely, Gilles Triscone, Michel Leresche

Rapport IRA-OFMET 001218

Lausanne, décembre 2000

Table des matières

Rapport

1.	Introduction	page	3
2.	Chronologie de la campagne	page	3
3.	Composition de la solution de référence	page	4
4.	Préparation de la solution de référence	page	5
5.	Contrôles 5.1 Pureté radionucléidique 5.2 Activités délivrées (test de reproductibilité) 5.3 Masses délivrées (évaluation de la perte par évaporation)	page	6
6.	Equipements et méthodes des laboratoires 6.1 Détecteurs 6.2 Logiciels 6.3 Géométries 6.4 Corrections de sommation 6.5 Etalonnages 6.6 Comparaison avec 1993	page	7
7.	Résultats et analyse 7.1 Généralités 7.2 Grandeurs d'évaluation 7.3 Situation par nucléide 7.4 Situation par laboratoire 7.5 Commentaires	page	10
8.	Conclusion	page	14
_	Références	page	15

Annexes

A. Participant	S
----------------	---

- B. Questionnaire
- C. Equipements et méthodes
- D. Masses et activités de référence
- E. Contrôle des activités distribuées
- F. Concentrations de référence et concentrations mesurées
- G. Déviations
- H. Déviations normées
- I. Déviations par laboratoire
- J. Déviations par nucléide
- K. Déviations de tous les résultats

1. Introduction

L'Institut universitaire de radiophysique appliquée (IRA) est mandaté par l'Office fédéral de métrologie (OFMET, dès 2001 METAS) pour la détermination et la diffusion de l'unité légale d'activité. La Section de surveillance de la radioactivité (SUER) de l'Office fédéral de la santé publique (OFSP) est responsable pour la surveillance de la radioactivité dans l'environnement.

Au printemps 2000, l'IRA-OFMET et la SUeR proposent conjointement un service d'étalonnage aux laboratoires suisses concernés par la surveillance de la radioactivité. L'opération a pour but de favoriser la cohérence des mesures d'activité par spectrométrie gamma en fournissant aux laboratoires intéressés une solution radioactive de référence leur permettant de contrôler l'étalonnage de leurs équipements, éventuellement d'en réaliser de nouveaux.

Contrairement à la campagne du même type organisée en 1993 [1] où des sources avaient été fournies, les laboratoires reçoivent une solution qui doit être conditionnée dans une géométrie de mesure à choisir.

La liste des laboratoires est fournie par la SUeR. Sur les dix-neuf laboratoires contactés, dix-huit répondent favorablement (voir <u>annexe A</u>). Ils reçoivent la solution au mois de juin et ont jusqu'à fin septembre pour livrer le résultat de leur mesure, ainsi que quelques informations sur l'équipement utilisé. Les valeurs de référence leur sont transmises à fin octobre. De ce fait, cette campagne d'étalonnage doit aussi être considérée comme une intercomparaison. La relation entre le laboratoire et le résultat reste confidentielle.

2. Chronologie de la campagne

- 28.04 2000 Circulaire d'invitation, avec délai de réponse au 15 mai.
- 23.05.2000 Circulaire d'information aux 18 laboratoires inscrits, avec plan des livraisons.

22.05-31.05	Fabrication des solutions à l'IRA-OFMET.
13.06-15.06	Livraison par le véhicule de l'IRA.
10.07-30.10	Réception des résultats.
30.10.2000	Envoi des certificats ainsi que des recommandations pour le bon usage de la solution en cas de nouvel étalonnage.
20.12.2000	Distribution du présent rapport aux participants.

3. Composition de la solution de référence

Dans la campagne organisée en 1993, le choix s'était porté sur ¹⁵²Eu [1].

Cette année, une solution multinucléide a été proposée, comportant le mélange des radionucléides suivants : ¹⁰⁹Cd, ⁵⁷Co, ¹³⁹Ce, ¹³⁷Cs, ⁸⁸Y et ⁶⁰Co. Ce mélange présente au total neuf émissions gamma principales, dont les énergies approximatives sont 88, 122, 136, 166, 662, 898, 1173, 1332 et 1836 keV.

La plage d'énergie usuelle est ainsi couverte. Les émissions du $^{109}\mathrm{Cd}$ (88 keV) et du $^{139}\mathrm{Ce}$ (166 keV) complètent la gamme des émissions de $^{152}\mathrm{Eu}$ dans une région où l'efficacité varie fortement avec l'énergie.

Deux des nucléides au moins, ⁶⁰Co et ⁸⁸Y, présentent des émissions en coïncidence. Les pertes de comptage qui en résultent doivent être prises en compte; elles dépendent de la géométrie de mesure. Dans un document [2] accompagnant le certificat, des facteurs de correction sont proposés, valables pour la géométrie conseillée par la SUeR à son réseau de surveillance. Sur demande, l'IRA-OFMET peut évaluer des facteurs de correction pour d'autres géométries.

4. Préparation de la solution de référence

L'IRA-OFMET possédait en stock les activités nécessaires en 57 Co, 137 Cs et 60 Co. Les trois autres radionucléides, de période plus courte, ont été achetés pour cette campagne auprès de fournisseurs étrangers.

Une fraction de chaque solution d'origine, éventuellement après dilution, est tout d'abord conditionnée dans une ampoule standard dont l'activité est mesurée dans la chambre d'ionisation de référence (CIR) de l'IRA-OFMET, elle-même rattachée au système internationnal de référence (SIR) du Bureau International des Poids et Mesures (BIPM) pour les nucléides considérés [3]. La date de référence est fixée au ler juillet 2000 00h00 TEC.

Une solution multinucléide concentrée est ensuite fabriquée en prélevant, par pesée, tout ou partie du contenu des ampoules cidessus. A la date de référence, l'incertitude-type s_c sur la concentration radioactive de chacun des nucléides est la suivante :

				¹³⁷ Cs		
s _c [%]	0.55	0.31	0.33	0.17	0.41	0.20

Enfin, les solutions destinées aux participants sont constituées en prélevant pour chacun d'eux une masse voisine de 150 mg de la solution multinucléide concentrée, masse que l'on porte à environ 1000 g par dilution dans une solution acide d'entraîneur (composition : HCl 0.1N avec 20 μ g/g CdCl₂, CoCl₂, CeCl₃, CsCl, YCl₃). Ces solutions sont conditionnées dans des bouteilles en polyéthylène d'un litre (modèle Semadeni 0117), numérotées MIX-551 à MIX-568 (réserve : MIX-569 et MIX-570); l'étanchéité est assurée en enduisant le bouchon d'une colle au cyanoacrylate. Dans la suite de ce rapport, les participants sont identifiés par le numéro de leur solution.

Chaque participant reçoit donc une solution personnifiée. Les grandeurs certifiées sont la masse totale (voisine de 1000 g) au moment de la fabrication de la solution (31.05.2000), et l'activité de chaque nucléide à la date de référence (voir $\underline{\text{annexe D}}$). On déduit de ces valeurs des concentrations radioactives comprises entre 0.8 et 20 Bq/g selon le nucléide. Ce sont ces concentrations

radioactives qui doivent être déterminées par les participants (voir la copie du questionnaire dans l'annexe B).

5. Contrôles

5.1 Pureté radionucléidique

La pureté radionucléidique des trois nucléides achetés pour cette campagne (¹⁰⁹Cd, ¹³⁹Ce et ⁸⁸Y) a été contrôlée en mai 2000. Aucune impureté significative n'a été mise en évidence. La pureté des autres nucléides (⁵⁷Co, ¹³⁷Cs et ⁶⁰Co) avait été déterminée antérieurement.

5.2 Activités délivrées (test de reproductibilité)

Avant la livraison, toutes les bouteilles ont été mesurées en comptage intégral au moyen d'un détecteur NaI(Tl) de gros volume. Le seuil de comptage est 45 keV. Pour vérifier la stabilité et l'aspect poissonnien des comptages, le résultat de la mesure d'une bouteille est la moyenne de 100 mesures de 10 s. Le taux de comptage par unité de masse de la solution devrait être constant. On trouvera à l'annexe E les valeurs T du taux par unité de masse, normalisé par la moyenne des 20 sources. La fluctuation correspond à la statistique des mesures et à l'erreur liée au centrage de la bouteille sur le détecteur. L'écart maximum à la moyenne est de 0.36%.

5.2 Masses délivrées (évaluation de la perte par évaporation)

Chaque bouteille, étiquetée et bouchon collé c'est-à-dire prête à la livraison, est pesée une fois le 31 mai, une seconde le 8 juin. De ces deux mesures on a estimé la masse perdue par évaporation : elle est de (0.041 ± 0.007) g (limite haute), soit 0.05% pour 100 jours.

6. Equipements et méthodes des laboratoires

Le questionnaire (<u>annexe B</u>) accompagnant la solution comportait des questions relatives aux équipements et aux méthodes. Les réponses sont présentées dans l'<u>annexe C</u>, elles sont classées par ordre alphabétique des sigles des laboratoires.

6.1 Détecteurs

Dans la colonne 'Détecteur' est indiqué le détecteur ayant servi à obtenir le résultat du laboratoire. Dans un cas, le laboratoire a utilisé quatre détecteurs et fourni autant de résultats. Ces 21 détecteurs se répartissent ainsi :

9	HpGe	type p
4	HpGe	type n
2	HpGe	type non défini
3	HpGe à puits	type p
2	HpGe à puits	type non défini
1	HpGe planar	type n

Les détecteurs à puits et le détecteur planar sont ceux de l'EAWAG, de l'EIG et de l'Institut Forel.

L'efficacité est indiquée pour 17 d'entre eux; les valeurs extrêmes sont 20% et 50%; la valeur moyenne est 28% environ.

Les détecteurs ont été mis en service entre 1981 et 1997. Les fabricants des détecteurs se répartissent entre PGT-Canberra (9), Intertechnique-Eurisys-Enertec (7), Ortec (4), non défini (1).

6.2 Logiciels

Quinze laboratoires utilisent les produits d'Intertechnique: Intergamma (3) et son successeur Interwinner (12). Deux laboratoires utilisent le produit de Canberra (Genie2000) et un celui d'Ortec (GammaVision).

6.3 Géométries

Sous le titre 'Géométrie utilisée', on entend la géométrie dans laquelle le résultat rapporté a été obtenu. Deux laboratoires ont utilisé trois géométries : l'un a fourni autant de résultats, l'autre n'en a fourni qu'un seul, obtenu sans doute en combinant les résultats déterminés avec chacune des géométries. L'un des détecteurs à puits a été utilisé comme un détecteur conventionnel (récipient posé sur le capot).

En excluant les autres détecteurs à puits et le détecteur planar, les géométries se répartissent comme suit:

6	500 ml	Semadeni 1742 (KUeR standard)
4	500 ml	Semadeni 0895 (IRA-OFMET standard)
2	1000 ml	AC standard
2	200 ml	
1	450 ml	Marinelli
1	50 ml	
1	40 ml	Semadeni 1712
1	1000 ml	Kautex Weithalsflasche
1	1000 ml	Semadeni 0117 (bout. de livraison)
1	non défin	i

Dans trois cas (une fois avec le récipient Semadeni 1742, une fois avec le récipient AC standard, une fois avec un récipient de 200 ml), la source a été placée à une certaine distance du capot du détecteur, réduisant ainsi l'importance des pertes par sommation.

Avec les détecteurs à puits, on utilise des tubes (diamètres 10 et 16 mm, volumes 3.5 à 10 ml); avec le détecteur planar, une boîte de 40 ml.

Sept laboratoires indiquent vouloir utiliser la solution de référence pour étalonner ou contrôler l'étalonnage de leur(s) détecteur(s) dans d'autres géométries.

6.4 Corrections de sommation

Désignées par Corsum dans l'annexe C, elles sont effectuées dans 6 cas. Dans 4 cas, aucune indication n'est donnée. Dans les 15 autres cas, aucune correction n'est effectuée. Il faut noter que pour les sources mesurées dans un puits, les sommations sont très

importantes, et l'on doit en principe utiliser un étalonnage spécifique pour chacun des nucléides.

6.5 Etalonnages

L'origine des étalons utilisés est diverse : Amersham/AEA Technology (5), LPRI/DAMRI (3), PTB (3), IRA-OFMET (3), IAEA (2), sans indication (4). L'étalonnage le plus ancien a été effectué en 1987, le plus récent en 2000.

6.6 Comparaison avec 1993

Des 16 laboratoires qui avaient pris part à la campagne de 1993, 13 ont participé cette année; les laboratoires nouveaux sont le CERN, l'EIG, l'EAWAG, l'Institut Forel, et le KL Bern. Il est intéressant de comparer la situation à sept ans d'intervalle.

Dans cinq cas, la personne directement concernée est la même en 1993 et en 2000.

Huit laboratoires ont utilisé le même détecteur lors des deux campagnes. La distribution des marques ne s'est guère modifiée.

Concernant les logiciels, le produit d'Intertechnique est toujours en tête. Des 13 laboratoires qui ont participé aux deux campagnes, 3 ont conservé Intergamma, 7 ont passé d'Intergamma à Interwinner, 2 de Canberra (Spectran) à Interwinner, et un d'Ortec (Minigam) à Interwinner. Un seul laboratoire a conservé sa fidélité à Canberra, en passant du Spectran à Genie2000.

En 1993, le récipient 500 ml Semadeni 1742 (KUeR standard) était pratiquement commun à tous les laboratoires. En 2000 il a été utilisé dans 6 cas, alors que dans 4 autres on lui a préféré le récipient Semadeni 0895, de même capacité mais mieux défini géométriquement.

7. Résultats et analyse

7.1 Généralités

En considérant qu'un laboratoire a fourni 4 résultats (un par détecteur), et qu'un autre en a fourni 3 (un par géométrie), il y a au total 23 résultats individuels. Le premier laboratoire cité a utilisé 3 détecteurs à puits, pour lesquels il n'a donné de résultats que pour deux des nucléides (ceux pour lesquels il disposait d'un étalonnage); dans le cas du détecteur planar, il ne donne, pour quatre des nucléides, qu'une estimation de la concentration.

Pour l'évaluation, les résultats multiples ont été combinés (moyenne simple, l'incertitude associée étant deux fois l'écart-type de la moyenne). Il y a donc un résultat par laboratoire (identifié par son numéro de solution), soit 108 valeurs de concentrations avec leurs incertitudes. Les valeurs mesurées figurent dans l'annexe F, en regard des valeurs de référence.

7.2 Grandeurs d'évaluation

On a calculé, pour chaque valeur, le rapport

R = (concentration mesurée) / (concentration de référence)

ainsi que l'incertitude élargie $2s_{\scriptscriptstyle R}$ (facteur d'élargissement k=2), où $s_{\scriptscriptstyle R}$ est l'incertitude-type composée, combinaison de l'incertitude $s_{\scriptscriptstyle c_mes}$ sur la concentration mesurée c_mes (indiquée par le laboratoire) et de l'incertitude $s_{\scriptscriptstyle c_ref}$ sur la concentration de référence c_ref.

L'incertitude s_{c_ref} sur la concentration de référence s'obtient par combinaison de l'incertitude sur la masse (au 31.05.2000) et de l'incertitude sur l'activité (voir l'<u>annexe D</u>). L'incertitude élargie $2s_{c_ref}$ est

	¹⁰⁹ Cd	⁵⁷ C0	¹³⁹ Ce	¹³⁷ Cs	⁸⁸ Y	⁶⁰ Co
2s _{c_ref} [%]	1.1	0.66	0.68	0.40	0.84	0.44
~c_ref [Bq.g ⁻¹]	17.8	0.791	0.967	7.89	4.20	4.34
$\sim 2s_{c_ref} [Bq.g^{-1}]$	0.2	0.005	0.006	0.03	0.03	0.02

où ~c_ref est la concentration moyenne livrée, et ~2s_{c_ref} la valeur absolue de l'incertitude élargie de ~c_ref.

Le rapport R, ou sous une autre forme la déviation R-1 exprimée en %, est une première manière d'évaluer un résultat. On trouvera les valeurs de R dans le tableau de l'annexe G et, sous forme graphique, dans l'annexe I (par laboratoire), dans l'annexe J (par nucléide) et dans l'annexe K (tous les résultats). Dans tous les cas, ce sont les incertitudes élargies (k=2) qui sont mentionnées.

Un second paramètre utile pour évaluer un résultat est la déviation normée, définie par la relation

$$u = |c_mes - c_ref| / \sqrt{s_{c_mes}^2 + s_{c_ref}^2}$$

qui peut s'écrire

$$u = | R-1 | / s_R$$

On trouvera les valeurs de u dans le tableau de l'<u>annexe H</u>. La déviation normée u permet d'apprécier si l'incertitude a été évaluée de manière réaliste.

La variable u est en principe distribuée selon la loi de Student (qui converge vers une distribution normale lorsque le degré de liberté augmente). Les critères suivants sont généralement admis :

u < 1.64	Les valeurs ne diffèrent pas de manière significative
1.64 < u < 1.96	Les valeurs ne diffèrent probablement pas de manière significative
1.96 < u < 2.58	On ne peut rien dire
2.58 < u < 3.29	Les valeurs diffèrent probablement de manière significative
3.29 < u	Les valeurs diffèrent de manière significative

7.3 Situation par nucléide

La moyenne des déviations par nucléide a été calculée (annexe \underline{G}). En classant les nucléides par valeurs croissantes de cette grandeur, on obtient : 88 Y (-0.6%), 139 Ce (+2.2%), 109 Cd (+2.4%), 60 Co (+2.6%), 137 Cs (+2.9%) et 57 Co (+4.5%). La déviation maximum (27%) est observée pour 139 Ce; la déviation minimum (-28%), pour 88 Y. La mauvaise position du 57 Co peut s'expliquer par le fait que la courbe d'efficacité est très 'pointue' à cette énergie.

La dispersion de R pour un même nucléide, mesurée par l'écarttype relatif des 18 valeurs, se situe entre 5.2% et 10.9%. On distingue deux groupes : ¹⁰⁹Cd, ¹³⁷Cs et ⁶⁰Co (écart-type relatif voisin de 6%); ⁵⁷Co, ¹³⁹Ce et ⁸⁸Y (écart-type relatif voisin de 10%).

Si l'on s'intéresse à la moyenne ainsi qu'à la moyenne quadratique des déviations normées (annexe H), on a, en classant les nucléides par valeurs croissantes de cette dernière grandeur: 109Cd (1.1), 57Co (1.2), 139Ce (1.5), 88Y (1.5), 137Cs (2.0) et 60Co (2.7). Le mauvais 'classement' du 137Cs et du 60Co étonne, ces nucléides étant souvent rencontrés; le fait a déjà été observé par ailleurs [4]. Quant au 57Co, son meilleur rang indique que les participants ont tenu compte, dans l'incertitude rapportée, de la difficulté mentionnée plus haut; cette remarque est également valable pour 109Cd, dont l'énergie correspond à une région où la courbe d'efficacité est très raide.

7.4 Situation par laboratoire

La déviation moyenne par laboratoire ($\underline{annexe\ G}$) s'étend de -10.3% à +15.4%. Onze laboratoires ($\underline{sur\ 18}$) ont une déviation moyenne inférieure (en valeur absolue) à 5%, et \underline{six} ($\underline{soit\ le}$ tiers), une déviation moyenne inférieure (en valeur absolue) à 1%. Cette $\underline{situation\ peut\ être\ considérée\ comme\ très\ satisfaisante.}$

La dispersion de R pour un même laboratoire, mesurée par l'écart-type relatif des 6 valeurs, se situe entre 0.9% et 14.4%.

La moyenne des déviations de tous les laboratoires est de +2.3%. En 1993 lors de la campagne avec 152 Eu [1], cette moyenne était de -2.1%.

En analysant les déviations normées (<u>annexe H</u>), et en s'appuyant sur les critères indiqués plus haut, on observe que dans 52 cas sur 108, la valeur mesurée et la valeur de référence ne diffèrent probablement pas de manière significative; dans 39 cas, la différence doit être considérée comme significative. Pour ces 39 résultats, l'évaluation de l'incertitude de mesure n'est pas satisfaisante.

Trois laboratoires rapportent des valeurs qui, toutes, peuvent être considérées comme probablement égales, à l'incertitude près, aux valeurs de référence. Cinq laboratoires présentent quatre ou cinq valeurs qui doivent être considérées comme significativement différentes des valeurs de référence.

7.5 Commentaires

Une tentative a été faite de mettre en relation la déviation moyenne par laboratoire avec l'équipement et les méthodes utilisées (type de détecteur, géométrie, logiciel, application de corrections pour les sommations, fournisseur de l'étalon). La taille des échantillons ainsi obtenus est cependant trop faible pour extraire de ces groupements des conclusions significatives.

L'exigence de confidentialité des résultats, posée a priori, ne facilite pas la rédaction du rapport. On a pris le parti d'identifier les équipements et les méthodes, dans le but de faciliter les contacts entre laboratoires, ceci au détriment de commentaires utiles, concernant par exemple les mesures faites avec une source dans un puits, ou placée à une certaine distance du capot du détecteur.

La leçon principale que l'on peut tirer de l'analyse des résultats est qu'il convient d'attribuer plus d'importance à l'évaluation de l'incertitude de mesure. Dans la règle, on ne peut pas se contenter de l'incertitude calculée par le logiciel, ni de l'écart-type de la moyenne de plusieurs mesures.

Quant à la manière d'exprimer le résultat et son incertitude, elle laisse souvent à désirer, comme on peut le voir dans le tableau de 1'<u>annexe F</u>.

On trouvera les règles pour l'évaluation et l'expression de l'incertitude de mesure dans la référence [5].

8. Conclusion

La présente campagne a permis aux laboratoires suisses concernés par la mesure de la radioactivité dans l'environnement d'évaluer leur aptitude à mesurer l'activité des radionucléides émetteurs gamma; à ce titre, elle s'inscrit dans une succession d'opérations organisées par l'IRA-OFMET [1] ou par l'IRA [6,7,8]. La solution radioactive de référence fournie a pu être utilisée, si nécessaire, pour améliorer l'étalonnage de leur équipement, ou en réaliser de nouveaux.

Les informations contenues dans ce rapport donnent à chaque participant le moyen d'examiner selon différents critères la qualité de ses résultats, de se situer dans l'ensemble des laboratoires, et d'entreprendre d'éventuelles actions correctives. Au plan des équipements et des méthodes, il est espéré que des contacts directs entre participants pourront être noués avec profit.

Il n'existe pas, dans le domaine de la surveillance de la radioactivité dans l'environnement, d'exigences réglementaires relatives à l'exactitude des mesures. Le panorama que cette campagne permet de dresser montre qu'au plan de la radioprotection, la situation en Suisse est satisfaisante. Néanmoins, une plus grande attention doit être portée à l'évaluation de l'incertitude de mesure.

Les auteurs remercient la Section de surveillance de la radioactivité pour son soutien, et tous les participants pour leur active collaboration.

Références

- [1] M.Décombaz et J.-J.Gostely, *Campagne de calibration* ¹⁵²Eu/1993, Rapport IRA-OFMET, décembre 1993.
- [2] M.Décombaz, Note for users of the mixed-radionuclide solution, IRA-OFMET/md001011.
- [3] BIPM key comparison database,

see : http://www.bipm.fr/enus/8_Key_Comparisons/key_comparisons.html

choose : The BIPM key comparison database

- [4] J.C.J.Dean and al., Environmental Radioactivity Intercomparison Exercise 1996, NPL Report CIRM 3, July 1997.
- [5] Guide to the expression of uncertainty in measurement, ISO 1993, ISBN 92-67-10188-9.
- [6] J.-F.Valley, J.-J.Geering, M.Décombaz, J.-J.Gostely, H.Voelkle, Intercomparaison de terre contaminée par du cesium radioactif, Rapport IRA, 1994.
- [7] J.-F.Valley, J.-J.Geering, M.Décombaz, H.Voelkle, C.Wastiel, Intercomparaison de la mesure d'activité d'un lait contaminé, Rapport IRA, novembre 1995.
- [8] T.Buchillier, C.Wastiel, H.Voelkle, J.-F.Valley, Intercomparaison de la mesure d'activité d'herbe contaminée en cas d'accident, Rapport IRA, août 1997.

IRA
Institut universitaire de radiophysique appliquée

OFMET

Office fédéral de métrologie

Campagne 2000

auprès des laboratoires suisses mesurant la radioactivité dans l'environnement

Annexes

Rapport IRA-OFMET 001218

Lausanne, décembre 2000

Laboratoire Adresse Personne concernée	Téléphone Fax E-mail
AC Labor Spiez Zentrale Analytik und Radiochemie	033 228 1636 / 1400 033 228 1402
3700 Spiez Herr Ernst Schmid	ernst.schmid@gr.admin.ch
CERN TIS Section Environnement	022 767 3893 022 767 9360
1211 Genève 23 Monsieur Pavol Vojtyla	pavol.vojtyla@cern.ch
CRN Nestec SA Centre de Recherche Nestlé Vers-chez-les-Blanc 1000 Lausanne 26	021 785 9309 021 785 8553
Monsieur Alain Pittet	alain.pittet@rdls.nestle.com
EAWAG Ueberlandstrasse 133 8600 Dübendorf	01 823 5111 01 823 5210
Dr Jürg Beer	beer@eawag.ch
EIG Ecole d'ingénieurs de Genève Lab. de phys.nucléaire 4, rue de la Prairie 1202 Genève	022 338 0526 / 0527 022 338 0410
Monsieur Gilles Triscone	triscone@eig.unige.ch
HSK Sektion MER	056 310 3970 056 310 3907
5232 Villigen HSK Herr Schibli	schibli@hsk.psi.ch
Institut FA. Forel 10, rte de Suisse 1290 Versoix	022 950 9213 022 755 1382
Monsieur Jean-Luc Loizeau	jean-luc.loizeau@terre.unige.ch
Kantonales Laboratorium Kunsthausweg 50 5000 Aarau	062 835 3022 062 835 3049
Madame Claudine Bajo	claudine.bajo@ag.ch
Kantonales Laboratorium Kannenfeldstrasse 2 4012 Basel-Stadt	061 385 2518 061 385 2509
Frau Verena Figueiredo	verena.figueiredo@bs.ch

Laboratoire Adresse Personne concernée	Téléphone Fax E-mail
Kantonales Laboratorium Bern Muesmattstrasse 19 3013 Bern	031 633 1111 031 633 1199
Dr U. Vögeli / Herr P.Bonetti	sekr.kantlab@gef.be.ch
Chemisches Laboratorium Planaterrastrasse 11 7001 Chur	081 257 2680 081 257 2149
Herr Otmar Deflorin	otmar.deflorin@klgr.gr.ch
Kantonales Laboratorium Spannerstrasse 20 8510 Frauenfeld	052 724 2264 052 724 2905
Dr Hans Guggisberg	hans.guggisberg@klf.tg.ch
Kantonales Laboratorium Luzern Vonmattstrasse 16 6002 Luzern	041 248 8405 041 248 8424
Herr Thomas Kaufmann	thomas.kaufmann@kla.gsd.lu.ch
Kantonales Amt für Lebensmittelkontrolle Blarerstrasse 2 9001 St-Gallen	071 229 2800 071 229 2801
Herr Paul Zäch	paul.zaech@gd-lmk.sg.ch
Kantonales Laboratorium Zürich Fehrenstrasse 15 8032 Zürich	01 252 5654 01 252 4753
Dr E. Gisler	klzh@bluewin.ch
PSI Abteilung für Strahlenhygiene und Entsorgung	056 310 2340 056 310 2309
5232 Villigen PSI Dr Jost Eikenberg	jost.eikenberg@psi.ch
SUeR Section Surveillance de la Radioactivité Chemin du Musée 3 1700 Fribourg	026 300 9167 / 9160 026 300 9743
Dr Heinz Surbeck	heinz.surbeck@mbox.bag.admin.ch
SUVA Bereich Physik Rösslimattstrasse 39 6003 Luzern	041 419 5437 041 419 6213
Herr Andreas Werthmüller	andreas.werthmueller@suva.ch

QUESTIONNAIRE

Nous vous prions de bien vouloir remplir ce questionnaire et le faire parvenir d'ici au 30 septembre 2000 à l'Institut de radiophysique appliquée, Grand-Pré 1, 1007 Lausanne. Si vous effectuez des mesures dans des géométries ou avec des équipements différents, remplir un questionnaire par équipement. Nous vous en remercions par avance.

A/ Résultat de la mes	ure
-----------------------	-----

Identification de la	a solution (par	exemple: MIX	7-573) :	
Date(s) et durée(s)	de la (des)	mes	ures :		
Concentrations radio (Ces résultats seront t				2000 00h00 TEC	(MEZ):
¹⁰⁹ Cd		±		Bq/g	
⁵⁷ Co		±		Bq/g	
¹³⁹ Ce		±		Bq/g	
¹³⁷ Cs		±		Bq/g	
88 _Y		±		Bq/g	

Pour évaluer l'incertitude, prière de se conformer aux recommandations internationales (cf. Guide to the Expression of Uncertainty in Measurement, ISO 1993, ISBN 92-67-10188-9; ISO: Varembé 1, case postale, 1211 Genève 20) et d'utiliser un facteur d'élargissement k=2 (Erweiterungsfaktor k=2).

B/ Description de l'équipement utilisé

Détecteur et type (par exempe : ORTEC modèle GEM-25195, p-type) :				
		 	• •	 · •
Année de mise en fonction :	• • •	 	• •	
Efficacité nominale (relative à ⁶⁰ Co 1.33 MeV) :	• • •	 	• •	 , %
Logiciel d'évaluation (par exemple: INTERGAMMA version 5.3) :				
		 	• •	

Questionnaire solution de référence multinucléide _ md000531

Laboratoire Adresse Personne concernée	Téléphone Fax E-mail
Kantonales Laboratorium Bern Muesmattstrasse 19 3013 Bern	031 633 1111 031 633 1199
Dr U. Vögeli / Herr P.Bonetti	sekr.kantlab@gef.be.ch
Chemisches Laboratorium Planaterrastrasse 11 7001 Chur	081 257 2680 081 257 2149
Herr Otmar Deflorin	otmar.deflorin@klgr.gr.ch
Kantonales Laboratorium Spannerstrasse 20 8510 Frauenfeld	052 724 2264 052 724 2905
Dr Hans Guggisberg	hans.guggisberg@klf.tg.ch
Kantonales Laboratorium Luzern Vonmattstrasse 16 6002 Luzern	041 248 8405 041 248 8424
Herr Thomas Kaufmann	thomas.kaufmann@kla.gsd.lu.ch
Kantonales Amt für Lebensmittelkontrolle Blarerstrasse 2 9001 St-Gallen	071 229 2800 071 229 2801
Herr Paul Zäch	paul.zaech@gd-lmk.sg.ch
Kantonales Laboratorium Zürich Fehrenstrasse 15 8032 Zürich	01 252 5654 01 252 4753
Dr E. Gisler	klzh@bluewin.ch
PSI Abteilung für Strahlenhygiene und Entsorgung	056 310 2340 056 310 2309
5232 Villigen PSI Dr Jost Eikenberg	jost.eikenberg@psi.ch
SUeR Section Surveillance de la Radioactivité Chemin du Musée 3 1700 Fribourg	026 300 9167 / 9160 026 300 9743
Dr Heinz Surbeck	heinz.surbeck@mbox.bag.admin.ch
SUVA Bereich Physik Rösslimattstrasse 39 6003 Luzern	041 419 5437 041 419 6213
Herr Andreas Werthmüller	andreas.werthmueller@suva.ch

	étrie utilisée pour cette mesure (le récipent est suppos ser sur le détecteur; sinon, préciser la distance) :	sé
-	500 ml Semadeni 1742 (KUeR standard)	oui/non
_	500 ml Semadeni 0895 (¹⁵² Eu/1993)	oui/non
-	autre (préciser, par exemple: boîte cylindrique, diamètre/hauteur/volume de la source = 52mm/30mm/64cm³)	:
	d et comment l'étalonnage a-t-il été effectué exemple: octobre 1990, avec PTB-Standardmischlösung 90-	·637) :
• • • •		
comp	-vous appliqué un facteur de correction pour tenir te des sommations (zerfallsschemaabhängige ationskorrektion) ?	oui/non
C/	Commentaires libres	
ou p	-vous l'intention d'utiliser cette solution pour étalonn lusieurs nouvelles géométries ? Si oui, les décrire. ertificat relatif à cette solution vous parviendra au mois d'octo	
Autr	es remarques :	
Labo:	ratoire:	
Date	: Signature :	

Laboratoire	Date des mesures et durée		Mise en onction	%	Logiciel Corsum	Géométrie utilisée	Etalonnage	Géométries envisagées
ACLS Spiez	31/08/00 60 [,] 000 s	HpGe type n Canberra GR 2019-7500 S	1988	23.7	Genie ACLS version 01/09/00 non	1000 ml AC standard Ø=172 mm, h=43 mm distance 6 cm	1994 LMRI mixed nuclides M	13
CERN TIS Genève	06/07/00 30′000 s	HpGe type p Canberra GC50	1997 19	50	Genie 2000 1.0A	500 ml Semadeni 1742	1999 CEA Standard	
					non			
CRN Lausanne	05/07/00 3′600 s	HpGe type p Canberra	1987	20	Intergamma 5.3C	500 ml Semadeni 1742	1998 PTB-Standard Mischlösung QCYB41	
					non		ee.meeung 20.2	
EAWAG Dübendorf	août 2000	HpGe puits	1991	~30	Interwinner 4.0	10 ml tube Ø=16 mm	2000 Amersham QCY54	
EIG Genève	31/07-18/09/00 60'000 s	HpGe type p well coax	1997	32	Interwinner 4.0	50 ml Ø=39 mm, h=73mm	2000 DAMRI Eu-152	500 ml Marinelli 1 L
	18 mesures	Eurisys EGPC 155-P-15			oui		IRA-OFMET I-131	cryotube

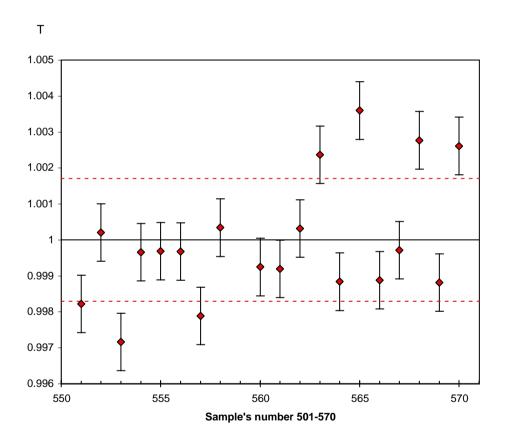
Laboratoire	Date des mesures et durée	Détecteur	Mise en fonction	%	Logiciel Corsum	Géométrie utilisée	Etalonnage	Géométries envisagées
HSK Villigen	20/06-27/06/00 54'000 s	HpGe type p PGT Model IGC 22	1987	22.2	Interwinner 4.1	proche du détecteur, récipient d'origine (interprétation : Semadeni 0117 1L)	1996 PTB-Standard Mischlösung 96-484	
Institut Forel Versoix	20/08/00 85′066 s	HpGe type p well coax Ortec GWL-12	1992 0230		GammaVision 5.10	5.9 ml tube en verre Ø=12 mm, h=50 mm	2000 Amersham Co-60 CK2 1997	272
1. premier détecteur		31100 3112 12	0200		non	2 12 mm, n 00 mm	IAEA Cs-137 soil-6	
Institut Forel Versoix	23/08-08/09/00 31'000-83'000 s	HpGe type p well Ortec GWL-11	1985		idem	idem	idem	
2. deuxième détecteur	4 mesures	Offec GWL-11	0230		non			
Institut Forel Versoix	17/08-22/09/00 16'000 - 63'000 s 4 mesures	HpGe well coax PGT Canberra	1981		idem	3.5 ml tube en verre Ø=10 mm, h=50 mm	idem	
3. troisième détecteur	4 mesures	Model IGBL 25			non	Ø=10 IIIIII, II=30 IIIIII		
Institut Forel Versoix	17/08-22/09/00 16′000 - 63′000 s 4 mesures	HpGe type n coax plat fenê Ortec GMX-50.		57.8	idem	40 ml Ø=65 mm, h=16 mm	2000 Amersham Co-60 CKZ autres : Pb-210,	772
4. quatrième détecteur		Offec divin-30.	ZZU-J		non		Be-7,Mn-54	

IRA-OFMET/md001212 _ Annexe C _ 3/5

Laboratoire	Date des mesures et durée		Mise en fonction	%	Logiciel Corsum	Géométrie utilisée	Etalonnage	Géométries envisagées
KL Aarau	30/06/00 21′500 s	HpGe type p PGT Model IGC 27	1989	27.7	Interwinner 4.1	500 ml Semadeni 0895	2000 IRA-OFMET 1993 Eu-152 standard	divers volumes et distances
KL Basel-Stadt 1. première géométrie	16/06/00-20/06/00 5'000 - 265'000 s 4 mesures	HpGe type p coax Eurisys EGPC 28-180-R	1998	28	Interwinner 4.1	500 ml Semadeni 0895	1998 Amersham QCY48	
KL Basel-Stadt	26/06/00-29/06/00 4 mesures de 1 h	idem	idem	idem	idem	'200 ml' Ø=50 mm, h=10 mm	idem	
2. deuxième géométrie								
KL Basel-Stadt 3. troisième géométrie	26/06/00-29/06/00 4 mesures de 2 h	idem	idem	idem	idem	'200 ml' \emptyset =50 mm, h=10 mm distance 9.5 cm	idem	
KL Bern	11/07-12/07/00 3 mesures de 8 h	HpGe type p Enertec EGPC2	1986 20	20.6	Interwinner 4.1	1000 ml AC standard Ø=172 mm, h=43 mm	1987	boîte de 53.2 ml
					oui	≥ 172 Hilli ₁ H=±0 Hilli		

IRA-OFMET/md001212 _ Annexe C _ 4/5

Laboratoire	Date des mesures et durée		Mise en fonction	%	Logiciel Corsum	Géométrie utilisée	Etalonnage	Géométries envisagées
KL Chur	16/06/00 24 h 19/06/00 24 h	HpGe Intertechnique EGPC20	1990		Interwinner 4.1			
		EGPC20			non			
KL Frauenfeld	12/07/00 150′000 s	HpGe type p Ortec GEM-20	1989 180	~20	Interwinner 4.1	500 ml Semadeni 0895		
					oui			
KL Luzern	16/06/00	HpGe type n Intertechnique EGPC 25	1990	25	Interwinner 4.0	500 ml Semadeni 1742	1994	
		201 0 20			non			
KL St-Gallen	20/07/00 425′211 s	HpGe type p Canberra Model 2081C	1988	20	Interwinner 4.0	500 ml Semadeni 1742	1999 IRA-OFMET 1993 Eu-152 standard	Semadeni 0117 1L Semadeni 1742 330 ml KLSG
KL Zürich	16/06/00 317′000 s 30/06/00 336′000 s	HpGe PGT Canberra		25.3	Intergamma 5.45	500 ml Semadeni 1742	1995 PTB-Standard	Semadeni 1741-1744 différents volumes
1. première géométrie		Model IGC 25			oui		Mischlösung 94-661	


Laboratoire	Date des mesures et durée		Mise en fonction	%	Logiciel Corsum	Géométrie utilisée	Etalonnage	Géométries envisagées
KL Zürich	20/06/00 167'000 s 27/06/00 247'000 s	idem	idem	idem	idem	500 ml Semadeni 0895	idem	
2. deuxième géométrie								
KL Zürich	22/06/00 412'000 s 04/07/00 593'000 s	idem	idem	idem	idem	450 ml Marinelli	idem	
3. troisième géométrie								
PSI Villigen	16/06/00 20'000 s 26/06/00 72'000 s	HpGe type p PGT Canberra Model IGC 30	1988 a	40	Interwinner 4.1	1000 ml Kautex Weithalsflasche Ø=95 mm, h=160 mm	1996 Amersham QCY48	
SUeR Fribourg	12/07/00 4'000 s	HpGe type n Intertechnique EGNC20	1987	20.5	Interwinner 4.1	40 ml Semadeni 1712 Ø=64 mm, h=12 mm distance 2.5 mm	1987 IAEA RG-set corrections annuelles si nécessaire	Vérification pour Semadeni 1742 et Semadeni 1712 avec les autres détect.
SUVA Luzern	17/09/00 54′000 s	HpGe type n EGC 20 R	1989	35	Intergamma 5.45d	500 ml Semadeni 1742 distance 14 cm	2000 AEA Technology Reference source HA	flac.scint. polyéth. 10 et 20 ml 383

Masses et activités de référence

Source	Туре	Certificat	Masse [g]	2s [g]	109Cd [kBq]	2s [kBq]	57Co [kBq]	2s [kBq]	139Ce [kBq]	2s [kBq]	137Cs [kBq]	2s [kBq]	88Y 2s [kBq] [kBq]	60Co 2s [kBq] [kBq]
MIX-551	B1000	0005-51.0220	1001.0	0.2	18.9	0.2	0.842	0.007	1.028	0.007	8.39	0.03	4.47 0.04	4.61 0.02
MIX-552	B1000	0005-52.0221	1001.0	0.2	19.6	0.2	0.870	0.007	1.063	0.007	8.68	0.03	4.62 0.04	4.77 0.02
MIX-553	B1000	0005-53.0222	1001.0	0.2	20.0	0.2	0.889	0.007	1.086	0.007	8.86	0.03	4.72 0.04	4.87 0.02
MIX-554	B1000	0005-54.0223	1001.0	0.2	17.0	0.2	0.755	0.006	0.923	0.006	7.53	0.03	4.01 0.03	4.14 0.02
MIX-555	B1000	0005-55.0224	1001.0	0.2	17.0	0.2	0.757	0.006	0.925	0.006	7.55	0.03	4.02 0.03	4.15 0.02
MIX-556	B1000	0005-56.0225	1001.4	0.2	17.1	0.2	0.759	0.006	0.928	0.006	7.57	0.03	4.03 0.03	4.16 0.02
MIX-557	B1000	0005-57.0226	1001.0	0.2	16.8	0.2	0.748	0.006	0.914	0.006	7.46	0.03	3.97 0.03	4.10 0.02
MIX-558	B1000	0005-58.0227	1001.1	0.2	17.0	0.2	0.757	0.006	0.925	0.006	7.55	0.03	4.02 0.03	4.15 0.02
MIX-559	B1000	0005-59.0228	1001.0	0.2	17.9	0.2	0.798	0.006	0.974	0.006	7.95	0.03	4.23 0.03	4.37 0.02
MIX-560	B1000	0005-60.0229	1001.1	0.2	17.0	0.2	0.754	0.006	0.921	0.006	7.52	0.03	4.00 0.03	4.13 0.02
MIX-561	B1000	0005-61.0230	1001.2	0.2	17.5	0.2	0.780	0.006	0.952	0.006	7.77	0.03	4.14 0.03	4.27 0.02
MIX-562	B1000	0005-62.0231	1001.0	0.2	18.2	0.2	0.808	0.006	0.987	0.007	8.05	0.03	4.29 0.04	4.43 0.02
MIX-563	B1000	0005-63.0232	1001.9	0.2	17.6	0.2	0.782	0.006	0.955	0.006	7.79	0.03	4.15 0.03	4.28 0.02
MIX-564	B1000	0005-64.0233	1001.3	0.2	17.8	0.2	0.793	0.006	0.969	0.006	7.91	0.03	4.21 0.03	4.35 0.02
MIX-565	B1000	0005-65.0234	1001.0	0.2	17.7	0.2	0.789	0.006	0.963	0.006	7.86	0.03	4.19 0.03	4.32 0.02
MIX-566	B1000	0005-66.0235	1001.0	0.2	18.1	0.2	0.803	0.006	0.981	0.006	8.01	0.03	4.26 0.03	4.40 0.02
MIX-567	B1000	0005-67.0236	1001.0	0.2	18.3	0.2	0.812	0.006	0.992	0.007	8.10	0.03	4.31 0.04	4.45 0.02
MIX-568	B1000	0005-68.0237	1001.0	0.2	17.2	0.2	0.764	0.006	0.933	0.006	7.62	0.03	4.06 0.03	4.19 0.02

IRA-OFMET/md001212 _ Annexe E

Contrôle des activités distribuées

Sample	Т	S_T
551	0.99821	0.00075
552	1.00020	0.00068
553	0.99716	0.00068
554	0.99966	0.00072
555	0.99968	0.00082
556	0.99968	0.00080
557	0.99788	0.00073
558	1.00034	0.00075
559	1.00088	0.00077
560	0.99924	0.00082
561	0.99919	0.00066
562	1.00031	0.00072
563	1.00237	0.00075
564	0.99884	0.00060
565	1.00360	0.00073
566	1.00360	0.00074
567	0.99971	0.00068
568	1.00277	0.00074

T est le taux de comptage par unité de masse de la solution, normalisé par la moyenne des 20 sources, obtenu par comptage intégral (seuil 45 keV) sur un détecteur Nal(Tl) 5x5".

Concentrations de référence et concentrations mesurées [Bq.g⁻¹]

Nucléide	Cd	-109	С	o-57	Ce	-139	Cs	-137	Y	·-88	Co	o-60
Solution	С	2s _c	С	2s _c	С	2s _c	С	2s _c	С	2s _c	С	2s _c
MIX-551	18.9 19.12	0.2 0.50	0.841 0.942	0.007 0.047	1. 027 0.957	0.007 0.051	8.38 9.237	0.03 0.044	4.46 4.627	0.04 0.030	4.61 4.706	0.02 0.030
MIX-552	19.6 19.0	0.2 1.7	0.869 0.820	0.007 0.049	1.062 1.04	0.007 0.04	8.67 8.52	0.03 0.38	4.62 4.69	0.04 0.14	4.77 4.78	0.02 0.15
MIX-553	20.0 19.8	0.2 1.2	0.888 0.868	0.007 0.033	1.084 1.100	0.007 0.047	8.85 8.78	0.03 0.21	4.71 4.620	0.04 0.097	4.87 4.810	0.02 0.077
MIX-554	17.0 19.35	0.2 0.21	0. 754 0.92	0.006 0.02	0. 922 0.99	0.006 0.02	7.52 7.98	0.03 0.31	4.00 3.74	0.03 0.10	4.14 4.15	0.02 0.06
MIX-555	17.0 18.2	0.2 0.8	0.756 0.778	0.006 0.025	0.924 0.915	0.006 0.028	7.54 7.93	0.03 0.20	4.01 4.22	0.03 0.14	4.15 4.77	0.02 0.13
MIX-556	17.1 17.4	0.2 0.80	0. 758 0.79	0.006 0.026	0.926 0.99	0.006 0.005	7 .56 7.7	0.03 0.024	4.03 4.2	0.03 0.018	4.16 4.8	0.02 0.020
MIX-557	16.8 16.45	0.2 1.34	0. 748 0.731	0.006 0.041	0.913 0.904	0.006 0.062	7.46 7.06	0.03 0.471	3.97 3.77	0.03 0.163	4.10 3.93	0.02 0.169
MIX-558	17.0 17.3	0.2 0.2	0.756 0.748	0. 006 0.012	0.924 0.887	0.006 0.013	7.54 7.31	0.03 0.05	4.01 3.80	0.03 0.05	4.15 4.04	0.02 0.05
MIX-559	17.9 19.0	0.2 0.7	0.797 0.779	0. 006 0.011	0.973 0.995	0.006 0.016	7.95 8.02	0.03 0.11	4.23 4.09	0.03 0.05	4.37 4.20	0.02 0.05
MIX-560	17.0 1.779E+01	0.2 8.904E-01	0. 753 7.648E-01	0.006 7.187E-02	0. 920 9.407E-01	0.006 7.241E-02	7.51 7.845E+00	0.03 8.820E-02	4.00 4.201E+00	0.03 6.241E-02	4.13 4.331E+00	0.02 6.241E-02
MIX-561	17 .5 19.1	0.2 0.8	0.779 0.78	0.006 0.03	0.951 0.94	0.006 0.02	7.77 7.58	0.03 0.15	4.13 3.96	0.03 0.10	4.27 4.31	0.02 0.10

Concentrations de référence et concentrations mesurées [Bq.g⁻¹]

Nucléide	(Cd-109		Co-57	(Ce-139		Cs-137		Y-88		Co-60
Solution	С	2s _c	С	2s _c	С	2s _c	С	2s _c	С	2s _c	С	2s _c
MIX-562	18.2	0.2	0.807	0.006	0.986	0.007	8.05	0.03	4.28	0.04	4.42	0.02
	17.7	0.26	0.824	0.0084	0.997	0.0093	8.15	0.056	4.07	0.027	4.39	0.025
MIX-563	1 7 .6	0.2	0. 780	0.006	0.953	0.006	7.78	0.03	4.14	0.03	4.28	0.02
	17.7	0.7	0.77	0.03	0.96	0.04	7.8	0.2	4.15	0.09	4.33	0.09
MIX-564	17.8 21.033	0.2 1.693	0. 792 0.973	0.006 0.053	0.968 1.044	0.006 0.050	7.90 8.813	0.03 0.291	4.20 5.156	0.03 0.123	4.34 4.763	0.02 0.125
MIX-565	17.7	0.2	0.788	0.006	0.962	0.006	7.86	0.03	4.18	0.03	4.32	0.02
	18.26	0.19	0.781	0.004	0.961	0.005	7.872	0.040	4.144	0.040	4.274	0.090
MIX-566	18.1	0.2	0.802	0.006	0.980	0.006	8.00	0.03	4.26	0.03	4.40	0.02
	15.900	0.679	0.923	0.029	1.216	0.044	8.534	0.466	4.417	0.257	4.611	0.271
MIX-567	18.3	0.2	0.811	0.006	0. 991	0. 007	8.09	0.03	4.31	0.04	4.45	0.02
	17.2	1.1	0.77	0.04	0.74	0.04	8.25	0.52	3.12	0.22	4.45	0.30
MIX-568	17.2	0.2	0. 763	0.006	0.932	0.006	7.61	0.03	4.05	0.03	4.18	0.02
	17.640	0.949	0.911	0.031	1.180	0.052	8.706	0.392	4.143	0.274	4.387	0.218

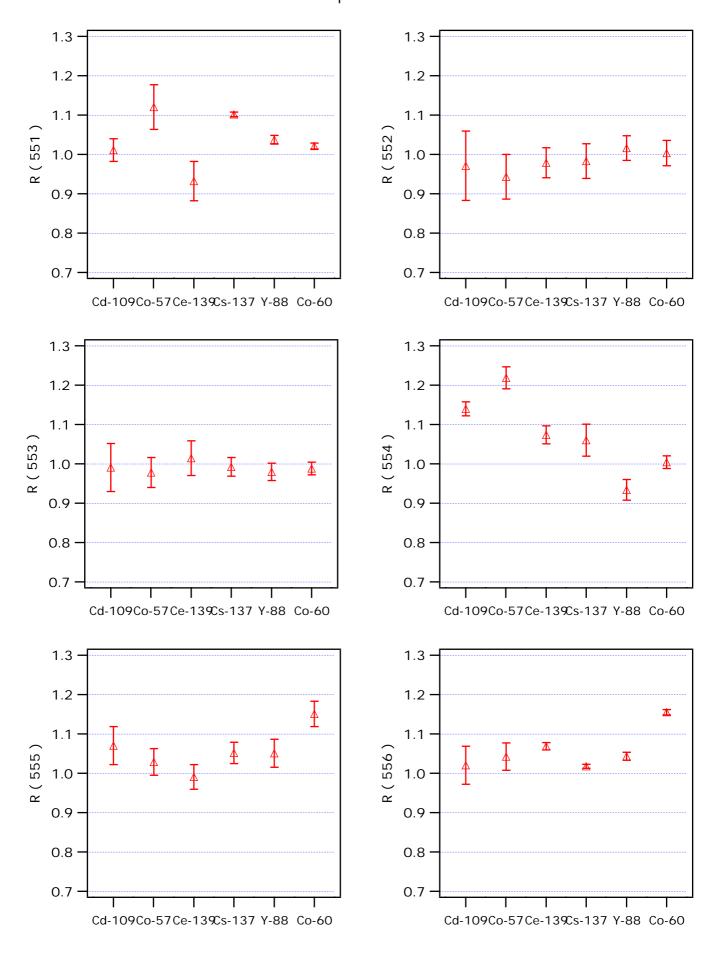
Les concentrations de référence, avec leur incertitude (k=2), sont indiquées **en caractères gras**. En dessous, figurent les concentrations mesurées, avec l'incertitude associée (k=2), telles que rapportées par les participants.

Campagne 2000 IRA-OFMET/md001213 _ Annexe G

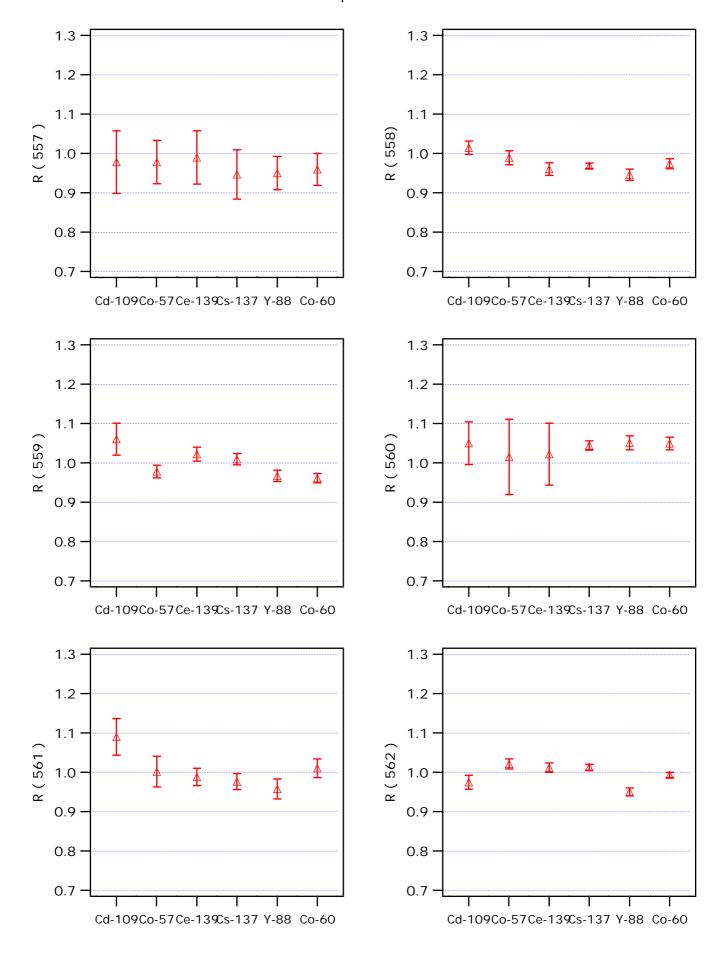
Déviations

Nucléide	Cd-109		Co-57		Ce-139		Cs-137		Y-88		Co-60							
Solution	R	2s _R	R	2s _R	R	2s _R	R	2s _R	R	$2s_R$	R	2s _R	Moyenne	Ecart-type	Ecart-type de la moyenne	Dev_moy	Dev_max	Dev_min
MIX-551	1.011	0.029	1.120	0.057	0.932	0.050	1.102	0.006	1.037	0.011	1.021	0.008	1.037	0.068	0.030	+3.7%	+12.0%	-6.8%
MIX-552	0.971	0.088	0.943	0.057	0.979	0.038	0.983	0.044	1.016	0.031	1.003	0.032	0.982	0.025	0.011	-1.8%	+1.6%	-5.7%
MIX-553	0.991	0.061	0.978	0.038	1.014	0.044	0.992	0.024	0.980	0.022	0.988	0.016	0.991	0.013	0.006	-0.9%	+1.4%	-2.2%
MIX-554	1.140	0.018	1.219	0.028	1.074	0.023	1.060	0.041	0.934	0.026	1.004	0.016	1.072	0.100	0.045	+7.2%	+21.9%	-6.6%
MIX-555	1.070	0.048	1.029	0.034	0.991	0.031	1.052	0.027	1.051	0.036	1.151	0.032	1.057	0.053	0.024	+5.7%	+15.1%	-0.9%
MIX-556	1.020	0.048	1.042	0.035	1.069	0.009	1.018	0.005	1.043	0.010	1.155	0.007	1.058	0.051	0.023	+5.8%	+15.5%	+1.8%
MIX-557	0.978	0.080	0.978	0.055	0.990	0.068	0.947	0.063	0.950	0.042	0.959	0.041	0.967	0.017	0.008	-3.3%	-1.0%	-5.3%
MIX-558	1.014	0.017	0.989	0.018	0.960	0.016	0.969	0.007	0.946	0.014	0.974	0.013	0.975	0.024	0.011	-2.5%	+1.4%	-5.4%
MIX-559	1.060	0.041	0.978	0.016	1.022	0.018	1.009	0.014	0.967	0.014	0.961	0.012	1.000	0.038	0.017	-0.0%	+6.0%	-3.9%
MIX-560	1.050	0.054	1.015	0.096	1.022	0.079	1.044	0.012	1.051	0.018	1.049	0.016	1.038	0.016	0.007	+3.8%	+5.1%	+1.5%
MIX-561	1.090	0.047	1.002	0.039	0.988	0.022	0.976	0.020	0.958	0.025	1.010	0.024	1.004	0.046	0.021	+0.4%	+9.0%	-4.2%
MIX-562	0.975	0.018	1.021	0.013	1.012	0.012	1.013	0.008	0.950	0.010	0.993	0.007	0.994	0.027	0.012	-0.6%	+2.1%	-5.0%
MIX-563	1.008	0.041	0.987	0.039	1.007	0.042	1.003	0.026	1.002	0.023	1.012	0.021	1.003	0.009	0.004	+0.3%	+1.2%	-1.3%
MIX-564	1.180	0.096	1.228	0.068	1.079	0.052	1.116	0.037	1.226	0.031	1.097	0.029	1.154	0.066	0.030	+15.4%	+22.8%	+7.9%
MIX-565	1.030	0.016	0.991	0.009	0.999	0.008	1.002	0.006	0.991	0.013	0.990	0.021	1.000	0.015	0.007	+0.0%	+3.0%	-1.0%
MIX-566	0.881	0.039	1.150	0.037	1.241	0.046	1.067	0.058	1.037	0.061	1.048	0.062	1.071	0.121	0.054	+7.1%	+24.1%	-11.9%
MIX-567	0.942	0.061	0.949	0.050	0.747	0.041	1.020	0.064	0.724	0.051	1.000	0.068	0.897	0.129	0.058	-10.3%	+2.0%	-27.6%
MIX-568	1.027	0.056	1.194	0.042	1.265	0.056	1.144	0.052	1.023	0.068	1.048	0.052	1.117	0.100	0.045	+11.7%	+26.5%	+2.3%
Moyenne Ecart-type Ecart-type de la moyenne	1.024 0.070 0.017		1.045 0.094 0.023		1.022 0.111 0.027		1.029 0.053 0.013		0.994 0.095 0.023		1.026 0.057 0.014							
Dev_moy Dev_max Dev_min	+2.4% +18.0% -11.9%		+4.5% +22.8% -5.7%		+2.2% +26.5% -25.3%		+2.9% +14.4% -5.3%		-0.6% +22.6% -27.6%		+2.6% +15.5% -4.1%					+2.3%		

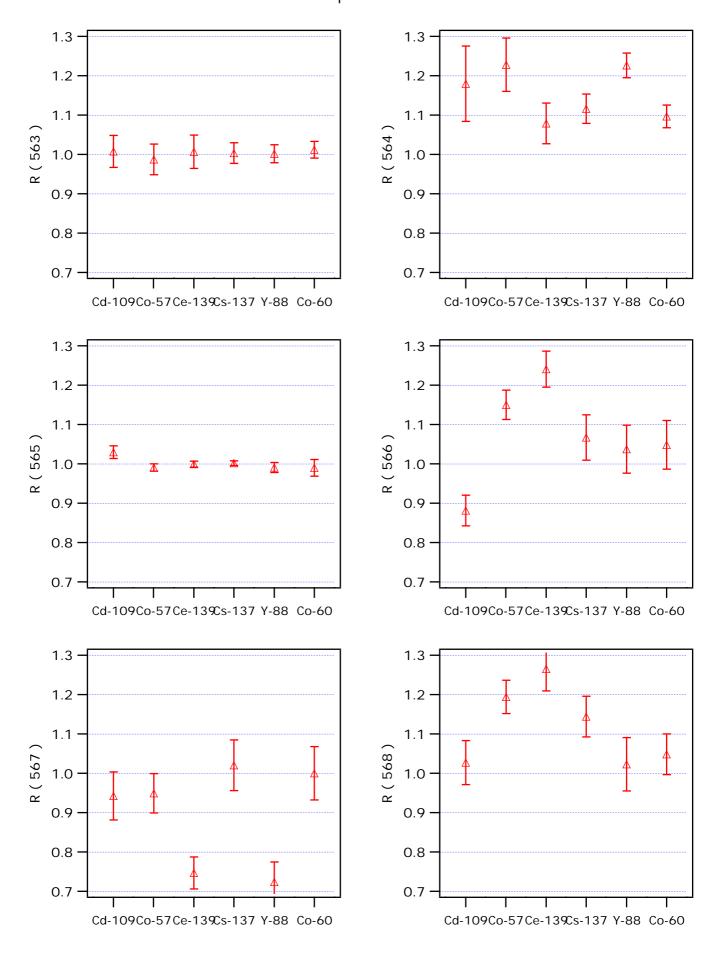
 $R = c_mes/c_ref$ est le rapport de la concentration mesurée à la concentration de référence, $2s_R$ l'incertitude correspondante (facteur d'élargissement k = 2). Dev_moy = moyenne (R) - 1, Dev_max = max (R) - 1, Dev_min = min (R) - 1 sont les déviations moyenne, maximum et minimum, par ligne (n=6) respectivement par colonne (n=18).

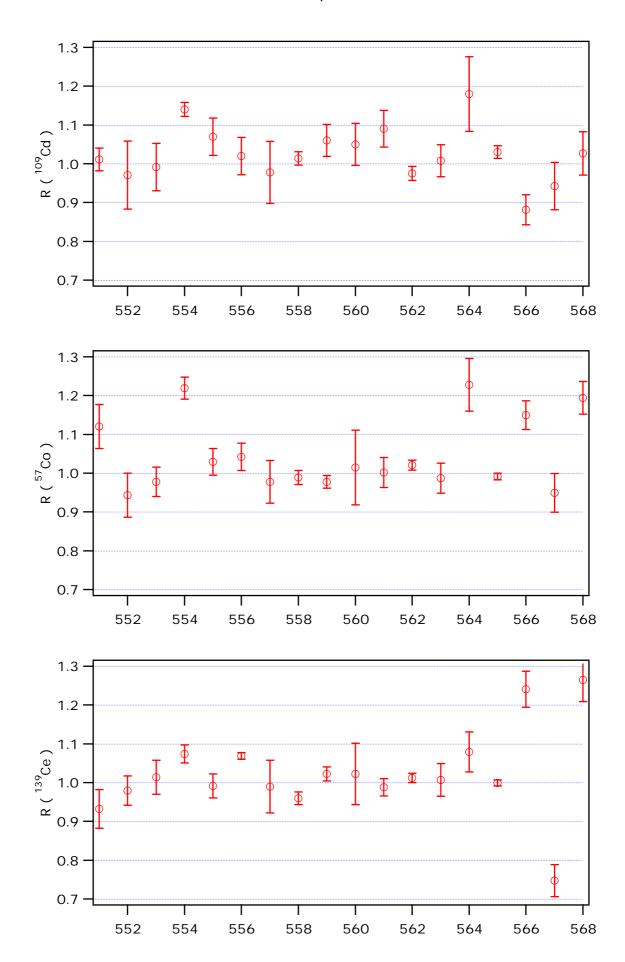

Déviations normées

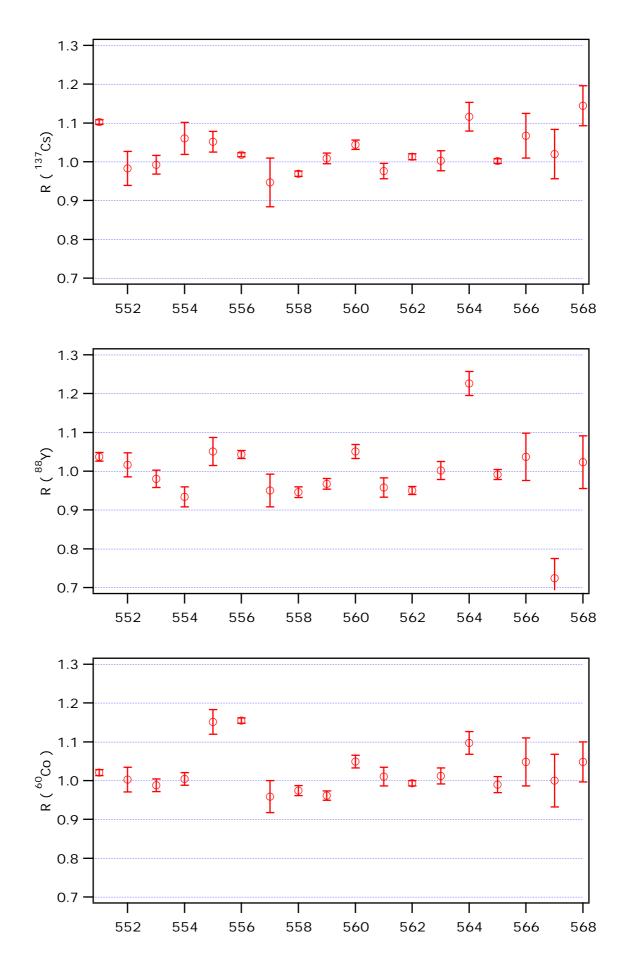
Nucléide	Cd-109	Co-57	Ce-139	Cs-137	Y-88	Co-60				
Solution	u	u	u	u	u	u	u_moyen	usq_moy	nb(u<=2.0)	nb(u>3.3)
MIX-551	0.7	4.3	2.7	31.5	6.8	5.5	8.6	5.5	1	4
MIX-552	0.7	2.0	1.1	0.8	1.0	0.2	1.0	0.5	6	0
MIX-553	0.3	1.2	0.7	0.7	1.8	1.4	1.0	0.5	6	0
MIX-554	15.9	15.5	6.5	2.9	5.1	0.5	7.7	4.0	1	4
MIX-555	2.9	1.7	0.6	3.9	2.9	9.5	3.6	1.9	2	2
MIX-556	0.8	2.4	15.5	7.7	9.0	46.3	13.6	8.4	1	4
MIX-557	0.6	0.8	0.3	1.7	2.4	2.0	1.3	0.6	5	0
MIX-558	1.6	1.2	5.1	8.6	7.8	4.1	4.7	2.2	2	4
MIX-559	2.9	2.8	2.5	1.3	4.6	6.4	3.4	1.6	1	2
MIX-560	1.8	0.3	0.6	7.2	5.7	6.2	3.6	1.9	3	3
MIX-561	3.8	0.1	1.1	2.4	3.3	0.8	1.9	1.0	3	1
MIX-562	2.8	3.2	2.0	3.3	9.9	2.2	3.9	1.9	1	1
MIX-563	0.4	0.7	0.3	0.2	0.2	1.2	0.5	0.2	6	0
MIX-564	3.8	6.8	3.0	6.2	14.6	6.6	6.8	3.2	0	5
MIX-565	3.9	1.8	0.3	0.7	1.4	1.0	1.5	0.8	5	1
MIX-566	6.1	8.1	10.5	2.3	1.2	1.6	5.0	2.5	2	3
MIX-567	1.9	2.0	12.5	0.6	10.7	0.0	4.6	2.8	4	2
MIX-568	1.0	9.3	9.4	5.6	0.7	1.8	4.6	2.4	3	3
u_moyen usq_moy	2.9 1.1	3.6 1.2	4.2 1.5	4.9 2.0	4.9 1.5	5.4 2.7				
nb(u<=2.0) nb(u>3.3)	10 5	10 5	9 6	7 7	6 9	10 7		-	52	39

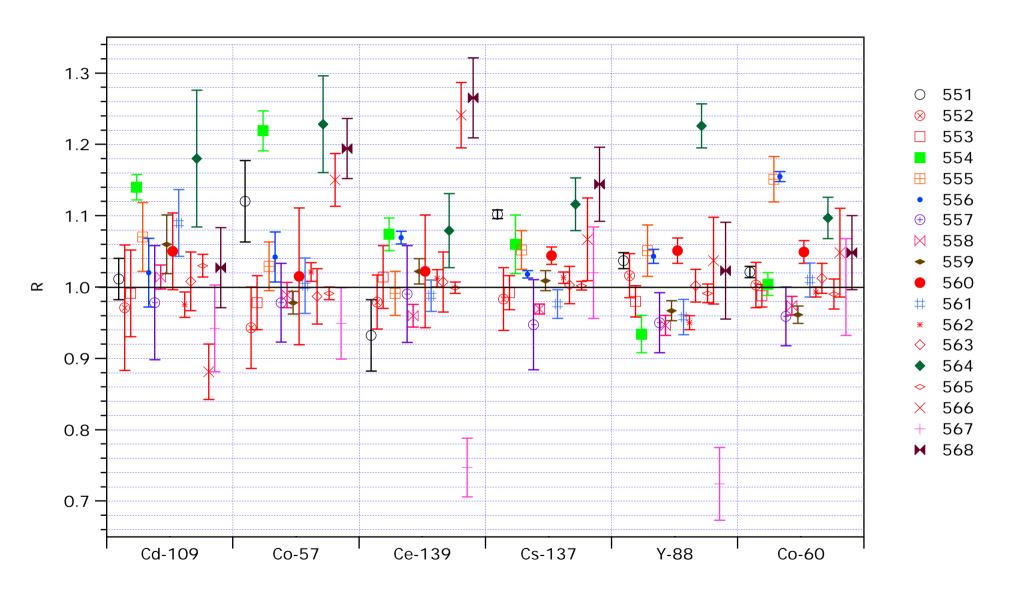

u est la déviation normée, définie par le rapport $u = |R-1|/s_R$. u_moyen est la moyenne de u, par ligne (n=6) respectivement par colonne (n=18). usq_moy est la moyenne quadratique de u, par ligne respectivement par colonne. nb(u<=2.0), respectivement nb(u>3.3) est le nombre de valeurs pour lesquelles u<=2.0, respectivement u>3.3.

u<=2.0 : la valeur mesurée et la valeur de référence ne diffèrent probablement pas de manière significative. u>3.3 : la valeur mesurée et la valeur de référence diffèrent de manière significative.


Déviations par laboratoire


Déviations par laboratoire


Déviations par laboratoire


Déviations par nucléide

Déviations par nucléide

Déviations de tous les résultats

