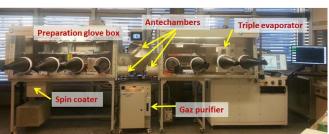



## NANOPARTICULES FONCTIONNALISEES APPLIQUES AU PHOTOVOLTAIQUE

**NAFOP** 


Résumé du projet

Nous avons utilisés des nanoparticules pour améliorer le rendement de cellules photovoltaïques organiques.

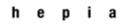
La synthèse de ces cellules solaires nécessite un environnement sec (<0.1 ppm de  $O_2$  et  $H_2O$ ) monté dans le cadre de ce projet.

Des efficacités améliorées ont été démontrées pour les trois cas suivants :

- ajout de points quantiques (quantum dots QD) CdSe fonctionnalisés à l'hexadécilamine
- ajout de couche de cristaux à effet « upconversion » de NaYF<sub>4</sub>:Er,Yb en amont de la cellule
- remplacement de la couche de transporteur de trou PEDOT :PSS couramment utilisée par une couche d'oxyde de métaux de transition (MoO<sub>3</sub>) obtenue par synthèse sol-gel.



Système de boîte à gants avec évaporateurs intégrés ▲ Washed QDs - Ratio 1:10 2.0E-3 1.8E-3 Unwashed QDs - Ratio 1:5 Reference (without QDs) 1.6E-3 1.4E-3 1.2E-3 1.0E-3 8.0E-4 6.0E-4 4.0E-4 2.0E-4 0.0E+0 0.4 0.2 0.6 Voltage[V]


Effet des QD de CdSe sur la caractéristique I-V de la cellule organique ITO/PETOT:PSS/PCBM-P3HT:Al

## Valorisation

M. Jobin, C. Pellodi "Organic Solar Cells improvement with quantum dots, up-converters and MoO<sub>3</sub> hole transport layers" Proc. SPIE 9140, 914008-2. (Présentation à SPIE Photonics Europe, Bruxelles).

Contact / Dr. Marc Jobin, Prof. HES hepia Auteurs / Dr. Marc Jobin, Prof. HES hepia

Ce projet a été effectué en collaboration avec Prof L. Niederhaueser, EIA-FR

