A perfused Biochip for continuous electrophysiological monitoring of 3-D neural tissues derived from Human pluripotent stem cells

Flavio Mor1, Marc Heuschkel1, Loris Gomez Baisac1, Adrien Roux1,2 and Luc Stoppini1,2*

1 Tissue Engineering Laboratory, HEPIA/HES-SO, Geneva, Switzerland
2 Swiss Centre for Applied Human Toxicology, SCAHT, Bern, Switzerland

*E-mail: luc.stoppini@hesge.ch

A perfused Biochip for continuous electrophysiological monitoring of 3-D neural tissues derived from Human pluripotent stem cells

Introduction
Testing of 3-D engineered neural tissue made of glial cells and neurons derived from human induced pluripotent stem cells (hiPSC) are among the most promising tools for the next decade in drug discovery and neurotoxicology. Micro-Electrode Arrays (MEA) recordings of spontaneous activity in 3-D neural tissue offer a non-invasive, rapid as well as possibly real-time and long-term assessment of compounds' effects. 3-D neural tissues are extremely sensitive to experimental conditions in particular to traditional methods using immersion of the tissues in a culture medium that does not provide sufficient short-term stability nor allow long-term survival of 3-D neural tissues.

Material & Methods
We have developed a small-volume Biochip perfusion system in vitro in which 3-D human neural tissues were transferred and maintained for several weeks up to few months onto porous membrane MEAs at ALI. Neural networks electrophysiological activities were continuously recorded and characterized using pharmacological reference compounds.

Results

- Effect of 20-µM NMDA (Glutamate agonist)
 - Baseline
 - ~140% increase

- Effect of 50-µM D-AP5 (Glutamate antagonist)
 - Baseline
 - ~93% decrease

- Effect of 2-µM kainic acid (Glutamate agonist)
 - Baseline
 - ~70% increase

- Effect of 100-µM CNQX (Glutamate antagonist)
 - Baseline
 - ~40% decrease

- Effect of 10-µM Bicuculine (GABAs antagonist)
 - Baseline
 - ~160% increase

Acknowledgments
This work was supported by the HES-SO, the Wyss Center and the SCAHT.

Conclusion
We have developed a small-volume Biochip perfusion in vitro system in which 3-D human neural tissues were transferred and maintained for several weeks up to few months onto porous membrane MEAs at ALI. Neural networks electrophysiological activities were continuously recorded and characterized using pharmacological reference compounds.

These human "brain" surrogate integrated Biochips will be a useful tool to enable the determination of toxicological profiles over a long timescales of new drug candidates or chemicals present in our environment.