

CLICK HERE for live Presentation, questions and discussion

Development of new perfusion system on human in vitro Blood-Brain Barrier biochip for toxicity assessment

Yoann Müller¹, Casimir de Rham¹, Loris Gomez Baisac¹, Luc Stoppini^{1,2} and Adrien Roux^{1,2*}

Introduction

The latest developments in *in vitro* Blood-Brain Barrier (BBB) model use the powerful of human pluripotent stem cells origin (hiPS, cord blood cells) and recent cell culture technics (3D culture and co-culture). Development of new technical tools mimic physiological conditions such as shear stress on endothelial cells or continuous renewal of medium. Specific readouts such as Trans-Endothelial Electrical Resistance (TEER), permeability coefficient (P_{app}) and immunolabelling are typical parameters to characterize the BBB. Combination of biological, technical and readouts will lead to "next generation OoC".

Confluent endothelial cells in a static mode (C) versus in a dynamic mode (9 dyne/cm2) (D).

¹ Tissue Engineering Laboratory, HEPIA/HES-SO, Geneva, Switzerland ² Swiss Centre for Applied Human Toxicology, SCAHT, Basel, Switzerland

Biochip in dynamic mode

Expression of ZO-1 by endothelial cells in a static mode (left) versus in a dynamic mode (right).

Material & Methods

hCMEC/D3 and CD34⁺ derived cells.

Conclusion

Implementation of the TEER in the biochip is ongoing development.

