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Abstract. Urbanization and condensation of habitants per m2 have led to an intense use of subsurface 

volumes as construction space. Planning and constructing in such spaces is a very challenging task, 

since knowledge of existing objects is fragmentary and imprecise. An intelligent identification of 

present objects and thereby detecting available volumes would increase the design quality of 

projects, since incidents reported during field excavations (Tanoli et al., 2019) are numerous and 

costly. Combining existing official territorial data with intelligent methods for information 

completion, compliance checking and data management, is a promising approach as it has been 

partially demonstrated by the use of ontologies (Caselli et al., 2020; Métral et al., 2020). The 

minimum level of necessary information for a model-checking framework is identified and 

formalized by an ontology. The ontology then serves as a basis schema for a triple store database, 

storing data, completion and compliance rules. The process of data completion allows to qualify the 

confidence in spatial information delivered. 

1. Introduction 

Worldwide, the field of construction is influenced by the development of urban underground 

spaces (Bobylev and Sterling, 2016). However, this increasing utilization should be in phase 

with functionalities deployed in cities (Admiraal and Cornaro, 2017). The UUS density metric 

is proposed as an indicator to improve the management of energy demand in urban areas 

(Bobylev, 2016a). Overall, the Underground Sustainable Project Appraisal Routine (Uspear) 

provides guidelines structure subsurface projects (Zargarian et al., 2018). 

Geneva based experts (SIG, 2020), analyzed ground-penetrating radar (GPR) as a solution to 

measure missing data of existing utility networks. It has been found, that this solution is costly 

and not precise enough. Additionally, time consuming post-processes are required to handle 

measured data-sets. The UK-based project Mapping the Underworld (MTU) proposes ray 

tracing (Shan et al., 2006) as an alternative. 

Shortly after the emergence of the BIM methodology in the AEC industry, it became clear that 

combining BIM with GIS-type data would increase the quality of territorial and urban planning. 

Use cases, as checking the occupation of subsurface volumes, explicitly need GIS data to 

discover free installation space and BIM data to represent, e.g., utility networks. 

3D geoinformation embedded in city models can serve as a basis for several use cases, as 

presented by Biljecki (Biljecki, Stoter, et al., 2015). Examples cited are the energy demand 

estimation on small scale to assess the return of average building energy retrofits, the visibility 

analysis using 3D city models in order to determine the sky view factor metric required for 

thermal comfort analyses or the automatic identification of suitable roof surfaces for the 

installation of photovoltaic panels. Solar installation potential is especially sensitive to the 

positioning of the city model (Biljecki, Heuvelink, et al., 2015), as an uncertainty of 50 cm 

could lead to a variation of 10 % in the estimation of produced energy. It would be 

advantageous, if such use cases could integrate BIM data. The challenge is that BIM and GIS 

systems apply different concepts for interoperability, which are difficult to match. 

Several proposals have been made to provide convergence for BIM and GIS data structures. 

Stouffs (Stouffs et al., 2018) uses a triple grammar approach: a solution is developed to map 

mailto:kamel.adouane@hesge.ch


BIM-IFC type graph towards GIS-CityGML graphs. Adouane (Adouane et al., 2019) presented 

a specific use case to map a complete building from a BIM-IFC format towards GIS-CityGML. 

His methodology has been validated on a general architectural model containing complex 

geometries. Biljecki has developed an ADE (Application Development Extension) to automate 

the BIM-IFC conversion towards GIS-CityGML format. The conversion strategy has been 

tested in collaboration with the Building and Construction Authority (BCA) of Singapore 

(Biljecki et al., 2021). 

Interoperability for BIM systems is supported worldwide by buildingSMART international, in 

particular by their IFC standard. Pauwels (Pauwels et al., 2017) proposes to use Web ontology 

language (OWL) to specify IFC. An OWL representation facilitates the mapping between data 

models, like IFC and CityGML. 

Xu and Cai (Xu and Cai, 2020) are using ontologies to describe and to manage heterogeneous 

data sets of underground utilities: they integrate digital conversion tools for spatial relations 

among objects. Building code compliance is checked through SPARQL queries on triple store 

databases. 

As shown by the examples above, BIM and GIS convergence can be achieved. It should be 

mentioned, that due to the different objectives of such systems, not all BIM information is 

transferable into a GIS system and vice versa. 

Official GIS databases, like the Geneva “SITG” (SITG, 2020) system, contain precise data for 

surface objects. When subsurface volumes are considered, existing data is less precise and 

complete and in most cases not sufficient for a 3D representation. Data completion through in-

situ measurements is complicated and costly. This hinders the correct representation of position 

and geometry of existing subsurface objects. 

2. The InnoSubsurface project 

The overall objective of the “InnoSubsurface” project is to support subsurface project planning 

by proposing solutions for a better management of such volumes. As a first step, a taxonomy 

of subsurface objects and their necessary attributes for 3D representation and planning has been 

created. This structure is called “minimal data model”. The geometric model of the subsurface 

objects uses only primitives like extruded polygons, cylinders or truncated cones. It 

accommodates natural elements, like trees, manmade objects, like utility lines and public law 

restrictions, like contaminated sites. The data model has been transferred into an ontology, 

which integrates IfcOwl as well as CityGML elements (Caselli et al., 2020; Métral et al., 2020). 

The ontology serves as a data schema for a triple store, populated by data from the “SITG” 

database. As expected, provided information is not sufficient for a 3D representation as defined 

by the minimal model. Therefore, a completion strategy for positioning and geometrical 

attributes had to be developed.  

Object attributes of the minimal model related to position and geometry are associated to a 

confidence level. The confidence level might represent measurement precision or the 

confidence associated to an attribute derived by a completion strategy. Completed objects are 

stored in the triple store database. Hypotheses used for completion are called “Completion 

rules”. They are derived by construction codes or interviews with practitioners and formulated 

according to a generic rule model, described in (Caselli et al., 2020). Rules are stored together 

with subsurface objects. 

Although completion rules can be defined for the majority of attributes on a theoretical level, 

the completed data might give unrealistic results on a practical level. A first proposal for a 



metric to qualify subsurface volumes is made by Bobylev (Bobylev, 2016b). He relates 

subsurface volumes to ground surface. His metric does neither provide an indicator on the 

quality of data used to calculate the volume of subsurface objects nor on the quality of their 

position. 

The paper highlights the following aspects of the “InnoSubsurface” project: 

 The integration of confidence levels for positioning and geometric attributes of 

subsurface objects 

 The combination of object confidence on a class level 

 The visual representation of the degree of confidence 

 A first approach to qualify spatial information for underground volumes with respect to 

constructability, integrating data completeness, precision as well as the metric proposed 

by Bobylev. 

3. Methodology 

3.1 Using probability functions to represent confidence in subsurface object position and 

geometry attributes. 

Positioning and geometrical representation of objects are based on measured and empirical 

elements (completion rules). In order to represent the precision of such attributes, we propose 

to use simple probabilistic functions. Their integration vary according to the nature of the 

imprecision: has the value been measured or derived by a completion rule? 

Each object possesses two visual representations: 

 The core representation is called “primary object” and specifies the completed object 

derived by SITG and completion rules. 

 The second representation is called “secondary object“. The secondary object envelops 

the primary one and indicates the confidence, that a given object can be found inside its 

boundaries. The developed stochastic model allows the user to choose the desired 

confidence level, which affects the size of the secondary object. 

3.1.1 Triangle probability function in multiple dimensions 

Measured attributes can reach, according to expert interviews, a maximum of 95%. A triangle 

distribution, with an overall degree of confidence of 95%, is assigned to model the precision of 

positioning measurements. Based on SITG description, the precision of x and y coordinates of 

the cantonal database is +/-10 cm. Figure 1 illustrates the model for the x coordinate of a tree 

root. 

The concept of “primary” and “secondary” objects is shown Figure 2. The blue cylinder 

represents the primary object, the red cylinder the secondary object. 

 



 

Figure 1: Triangle probability density distribution function for the x coordinate of the tree position 

Figure 2 indicates how multiple probabilities for single attributes are modeled. Since horizontal 

positioning needs x and y coordinates, the confidence interval of the two has to be combined. 

Depth information is related to a “step” probability function. The uncertainty for the tree root 

model in Figure 2 is estimated by Equation 1. 

 

Figure 2: Example for primary (blue cylinder) and secondary objects (red cylinder) of tree roots with primitive 

probabilistic density functions associated to positioning and depth attributes 

Equation 1 

𝑂𝑏𝑗𝑒𝑐𝑡𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = ∏ 𝑝

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

 

3.1.2 The Dirac probability density function 

The Dirac probability density function represents the confidence used in completion rules for 

empirical single values. These are, for example, a standard height and quantity for basement 

floors, a standard diameter for utility pipelines, etc. Figure 3 presents the model of the Dirac 

primitive for a gas network node. 



 

Figure 3: Dirac probability density distribution function (green arrow) applied to the diameter of a gas node 

The maximum level of confidence for such a completion is set to 80 %, based on expert 

interviews. 

3.1.3 The Pert probability density function 

The confidence in the depth of utility networks is modeled by a Pert probability density 

function. When depth information for a particular network is unknown, a Pert function based 

on neighboring networks of the same type, containing the desired depth information, is 

established. The function is characterized by the triplet {a,b,c}, fitted by the least square method 

to the depth distribution histogram. 

Figure 4 shows how the Pert function is used to place the primary and secondary object of a gas 

network. The top of the primary object is placed at a depth of PERT coeff b, (90 cm in this 

example). The secondary object is modeled by a bounding rectangle around the pipeline 

diameter. The maximal lateral limits of the secondary object are obtained using the triangle 

probability function of Figure 1, since x and y coordinates are known. The upper and lower 

bounds of the secondary object are calculated by adding a second component, obtained by 

subtracting the measurement uncertainty from PERT coeff a (for the upper limit) and by adding 

the measurement uncertainty to PERT coeff c (for the lower limit). 

As Figure 4 demonstrates, the size of the secondary object varies with the confidence interval 

chosen by the user. 

 

Figure 4: Pert probability density distribution function applied to the positioning of a gas utility network 



3.2 Combining attribute confidence for a class of objects 

For a given class of objects, like all tree roots, the confidence level can be consolidated 

according to Equation 2. Volumesecondary represents the volume of the secondary volume, 

Objectuncertainty represents the object uncertainty introduced in section 3.1.1. 

Equation 2 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
∑(𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 ∗ 𝑂𝑏𝑗𝑒𝑐𝑡𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦)

∑𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦
 

3.3 Visual representation of confidence 

Each object is visualized by a twofold 3D representation, a primary and a secondary object, as 

introduced in section 3.1. In general, the secondary object possesses the same geometry as the 

primary. Figure 5 shows the only exception: for practical reasons, conducts are associated with 

a cuboid. As the user can choose the confidence level, the right side of the same figure shows 

the effect on the size of the secondary object. 

 

Figure 5: Primary and secondary objects for utility networks. The effect of varying confidence levels is shown 

on the right. 

3.4 A first approach to qualify spatial information for underground volumes 

An underground volume contains a finite number of objects with a finite number of geometrical 

and positioning attributes, which are required to visualize the primary object. Available data is 

analyzed to identify the number of missing attributes. This number is related to the total number 

of attributes required. 

As the volume of objects is not taken into account, the Completeness Ratio (Equation 3) only 

describes the information maturity level within the database. Small objects are given the same 

weight as larger ones. 

Equation 3 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠𝑅𝑎𝑡𝑖𝑜 =
∑ ∑ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝐶𝑜𝑢𝑛𝑡𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔(𝑂𝑏𝑗𝑒𝑐𝑡)𝑂𝑏𝑗𝑒𝑐𝑡𝜖𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝜖𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦

∑ ∑ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑂𝑏𝑗𝑒𝑐𝑡)𝑂𝑏𝑗𝑒𝑐𝑡𝜖𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝜖𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦
 

The Completeness Ratio can be refined (Equation 4) when calculated separately for each object 

class. An average can then be obtained for all present object classes. This leverages the parasite 

effects created by objects with a bigger number of attributes or are present in a greater number 

than others in the evaluated volume. 



Equation 4 

𝑅𝑒𝑓𝑖𝑛𝑒𝑑𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠𝑅𝑎𝑡𝑖𝑜 =

∑
∑ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝐶𝑜𝑢𝑛𝑡𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔(𝑂𝑏𝑗𝑒𝑐𝑡)𝑂𝑏𝑗𝑒𝑐𝑡𝜖𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠

∑ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝐶𝑜𝑢𝑛𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑂𝑏𝑗𝑒𝑐𝑡)𝑂𝑏𝑗𝑒𝑐𝑡𝜖𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠
𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝜖𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦

𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙(𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝜖𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦)
 

4. Results/Validation 

The methodology has been applied to two subsurface volumes in the center of Geneva: a first 

one being nearby the main train station (Cornavin, 0.32 km2) and a second one located around 

the Arve river (PAV, 0.31 km2). 

4.1 Visual representation of results 

Information related to subsurface objects has been extracted from the SITG database for the 

two zones. The content has been stored in the triple store and missing positioning and 

geometrical attributes have been found by applying completion rules. Secondary objects are 

created based on the desired confidence level. In this sector, the confidence for all utility 

networks is evaluated to 92% by Equation 2. Finally, a GIS-Frontend is used to visualize the 

results (Figure 6). 

 

Figure 6: 3D viewing of underground volumes, developed (Topomat, 2021) 

Table 1 indicates the colors applied to the different objects, based on Swiss construction codes. 

Table 1 : Color codes used in Figure 6 

Colour Object 

green tree root 

blue natural water network 

brown lighting network 

red electricity network 

pink recycling site 

grey geotechnical 



4.2 Qualifying existing spatial information for two volumes 

The Urban Underground Space metric (UUS) (Bobylev, 2016b) is determined in order to 

validate the results of our project. For PAV and Cornavin areas, we obtain a density that is 

comparable to the results of underground volumes in Berlin (Table 2). 

Table 2: UUS for PAV and Cornavin zones 

 

 

Table 3 exposes the results of Equation 3 and Equation 4 applied to the two zones (Cornavin 

and PAV). The completeness ratio is calculated to approximately 80%, the refined metric 

results in approximately 73%. In addition, the total number of geometric parameters required 

to represent the volume, is indicated. 

Table 3: description of data completeness ratios for PAV and Cornavin zones 

5. Conclusion and future work 

The AEC industry needs to capture possibilities offered by the digital transition in order to 

speed up to industry 4.0. Data driven civil and underground engineering are two domains 

affected by this transition. The wideness and variety of the data available is advantageous but 

subject to errors. In addition, the data is heterogeneous in precision, completeness, accuracy, 

level of details and format. Intelligence based processes to automatically correct datasets are 

therefore required to make those data useful for analysis and design purpose. 

Curation and processing of uncertain and incomplete subsurface data prompts research on 

models to represent uncertainty and to process data with different confidence levels. This paper 

shows that even imprecise and incomplete data can be applied to provide a coherent 

representation of subsurface volumes. The proposed concept to associate objects to a 

confidence level and to inform the user about data quality is unusual but helpful. 

Only simple geometric representation and probability functions have been used to facilitate the 

understanding and control of the workflow. The developed methodology is independent from 

structure and quality of available subsurface data. Of course, completion strategies and 

confidence model will have to be checked before being applied to other locations with different 

database concepts. The overall architecture of the system, based on an ontology and a generic 

rule model, will nevertheless ease such an adaptation. 

A threshold, indicating when data completion strategies will become senseless, is needed. The 

qualifying metrics employed (UUS, completeness ratio, refined completeness ratio) have to be 

tested on this question and improved. 

metric PAV sector Cornavin sector Berlin (Bobylev, 2016b) 

surface, km2 0.31 0.32  

primary volumes, m3 (000 000) 0.49 0.42  

UUS m3/m2 (in cm) 156.8 133.7 128.0 

Area Completeness ratio Refined completeness ratio Gross geometric parameters 

Cornavin 80.22% 72.33% 387’282 

PAV 79.36% 73.76% 147’468 



The InnoSubsurface project investigated into the application of “Compliance rules”, defining 

spatial constraints on objects, as well. Besides the detection of geometric conflicts, these rules 

are good candidates to be employed, e.g., in order to automatically disentangle the crossing of 

multiple utility lines. 
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