Haute école du paysage, d'ingénierie et d'architecture de Genève

e p i a

Fiches modules ISC - Troisième année - 2023 - 2024

Table des matières

Modalités d'ensemble		3
ISC_51 / sISC_71 - Humanités 4	2023 - 2024	4
ISC_61 / sISC_81 - Humanités 5	2023 - 2024	7
ISC_62 / sISC_82 - Projet d'intégration 3	2023 - 2024	10
ISC_63 / sISC_83 - Travail de bachelor	2023 - 2024	13
ISC_E51 / sISC_E53 - Internet des objets	2023 - 2024	16
ISC_E52 / sISC_E71 - Conception en systèmes embarqués	2023 - 2024	20
ISC_E53 / sISC_E72 - Communication des systèmes embarqués	2023 - 2024	25
ISC_E61 / sISC_E81 - Systèmes embarqués intelligents	2023 - 2024	31
ISC_E62 / sISC_E82 - Pratiques métier en systèmes embarqués	2023 - 2024	36
ISC_L51 / sISC_L53 - Systèmes mobiles	2023 - 2024	41
ISC_L52 / sISC_L71 - Ingénierie logicielle	2023 - 2024	45
ISC_L53 / sISC_L72 - Intelligence et traitement de données	2023 - 2024	51
ISC_L61 / sISC_L81 - Développement logiciel en entreprise	2023 - 2024	57
ISC_L62 / sISC_L82 - Systèmes d'exploitation avancés	2023 - 2024	61
ISC_S51 / sISC_S53 - IoT et télécommunications	2023 - 2024	66
ISC_S52 / sISC_S71 - Sécurité des systèmes d'information 1	2023 - 2024	71
ISC_S53 / sISC_S72 - Sujets en sécurité	2023 - 2024	75
ISC_S54 / sISC_S71 - Sécurité des systèmes d'information 2	2023 - 2024	79
ISC_S61 / sISC_S81 - Réseaux avancés	2023 - 2024	84
ISC_S62 / sISC_S82 - Sécurité en entreprise	2023 - 2024	89

Haute école du paysage, d'ingénierie et d'architecture de Genève

Modalités d'ensemble

- · Tous les modules ISC sont remédiables.
- Un module est remédiable si la note du module est de 3.5.
- En cas de présence insuffisante à un module, la direction se réserve le droit de refuser la remédiation à l'étudiant-e.
- La note minimale d'un cours d'un module est de 2.5. Une note inférieure à 2.5 entraîne l'échec du module.
- Si un module est un prérequis pour un autre module, il est nécessaire d'avoir une note d'au moins 2.5 dans chacun des cours du module prérequis.

ISC_51 / sISC_71 - Humanités 4

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_51 (2 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[X]	Niveau basique	[]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue · Français	Sem	estre de référence	· S5	Responsable du modi	ule · N	I. Jérémy Gobe

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- Présenter de manière convaincante son projet de semestre
- Faire une étude de faisabilité et une étude de marché
- Monter un business plan
- Défendre le projet devant un public d'entrepreneurs

Unités de cours

Unité d'enseignement (obligatoir	Semestre automne	Semestre printemps
Gestion de projet 3 – ISC_511	32p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement (taux d'encadrement de 40%) 24 heures Travail autonome 36 heures

Total 60 équivalent à 2 ECTS heures

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_511 = 100%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_511 - Gestion de projet 3

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Présenter de manière convaincante son projet de semestre
- Faire une étude de faisabilité et une étude de marché
- · Monter un business plan
- Défendre le projet devant un public d'entrepreneurs

Contenus

- · Théorie du pitch en cours, validation de l'idée du projet
- · Pitch devant les professeurs du cours
- Etude de marché et business plan
- · Montage d'un business plan en groupes
- Pitch business plan en groupe devant les professeur.e.s du cours

Répartition horaire

Enseignement 24 heures (32 périodes de 45 minutes)
Travail autonome 36 heures
Total 60 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

Aucune

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_61 / sISC_81 - Humanités 5

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_61 (2 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[X]	Niveau basique	[]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue · Français	Sem	estre de référence	· S6	Responsable du mod	ule · N	1. Thomas Per

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- Rédiger un rapport selon les normes professionnelles en vigueur
- · Maîtriser les techniques de présentation orale avec diaporama

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Communication – ISC_611		33p

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 25 heures (taux d'encadrement de 40%)

Travail autonome 35 heures

Total 60 heures équivalent à 2 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_611 = 100%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_611 - Communication

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Rédiger un rapport selon les normes professionnelles en vigueur
- · Maîtriser les techniques de présentation orale avec diaporama

Contenus

Avec en ligne de mire le projet de bachelor, cet enseignement consiste à accompagner les étudiant.e.s dans la préparation du rapport et de la défense de leur projet de semestre de manière à ce que leurs rendus atteignent une qualité professionnelle. L'accompagnement comprend en particulier un volet sur les normes typographiques et bibliographiques, un volet sur la maîtrise des outils d'édition de textes, et un volet sur les techniques de présentation orale avec diaporama.

Répartition horaire

Enseignement 25 heures (33 périodes de 45 minutes)

Travail autonome 35 heures

Total 60 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

Aucune

ISC_62 / sISC_82 - Projet d'intégration 3

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_62 (4 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[X]	Niveau basique	[]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	nestre de référence	: S6	Responsable du modi	ule : N	I. Paul Albuquerqu

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- Traiter un problème d'ingénieur d'une complexité moyenne
- Proposer des solutions techniques et constructives résultant notamment d'une approche scientifique et économique menée de manière systématique
- Mettre en évidence l'acquisition de ses connaissances professionnelles par l'utilisation adéquate des moyens graphiques de représentation
- Démontrer ses aptitudes à organiser son travail et gérer le temps mis à disposition
- Mettre en valeur ses compétences lors de la présentation orale de son travail et par les réponses apportées aux questions des experts

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Projet de semestre – ISC_621		

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 0 heures (taux d'encadrement de 0%)

Travail autonome 120 heures

Total 120 heures équivalent à 4 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_621 = 100%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_621 - Projet de semestre

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Traiter un problème d'ingénieur.e d'une complexité moyenne
- · Proposer des solutions techniques et constructives résultant notamment d'une approche scientifique et économique menée de manière systématique
- · Mettre en évidence l'acquisition de ses connaissances professionnelles par l'utilisation adéquate des moyens graphiques de représentation
- Démontrer ses aptitudes à organiser son travail et gérer le temps mis à disposition
- · Mettre en valeur ses compétences lors de la présentation orale de son travail et par les réponses apportées aux questions des expert.e.s

Contenus

Chaque étudiant.e reçoit un sujet individuel. Les modalités du séminaire sont transmises à l'étudiant.e conjointement à la remise de son projet. Les modalités sont adaptées chaque année en fonction des sujets retenus.

Répartition horaire

Enseigneme	ent 0	heures	(0 périodes de 45	minu	tes)
Travail auto	nome 120	heures			
Total	120	heures	de travail pour ce	cours	3
Modalités d'	enseignement	:			
[] Ex cat	hedra (amphi)	[]	Frontal participatif	[X]	Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

Aucune

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_63 / sISC_83 - Travail de bachelor

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_63 (15 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[X]	Niveau basique	[]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue · Français	Sem	estre de référence	· S6	Responsable du modu	ıle · N	I. Paul Albuquerque

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Traiter un projet de complexité moyenne
- · Opérer et défendre ses choix
- · Démontrer son aptitude à gérer le temps
- Mettre en évidence ses compétences par la présentation orale et par les réponses aux questions des experts issus des milieux professionnels
- Développer de l'autonomie dans l'analyse et la présentation de résultats

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Projet de bachelor – ISC_631		

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 0 heures (taux d'encadrement de 0%)

Travail autonome 450 heures

Total 450 heures équivalent à 15 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_631 = 100%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_63 - Projet de bachelor

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Traiter un problème d'ingénieur-e d'une complexité moyenne
- · Développer des solutions techniques et constructives résultant notamment d'une approche scientifique
- Mettre en évidence les connaissances professionnelles acquises par une utilisation adéquate des moyens graphiques de représentation
- Démontrer ses aptitudes à organiser son travail et gérer le temps mis à disposition
- Mettre en valeur ses compétences lors de la présentation orale de son travail et par les réponses apportées aux questions des experts

Contenus

- · Chaque étudiant reçoit un sujet individuel.
- Les modalités du travail de Bachelor sont transmises à l'étudiant conjointement à la remise de son projet. Les modalités sont adaptées chaque année en fonction des sujets retenus.
- Un calendrier fixant les différentes échéances est distribué en démarrage du projet.
- Les projets doivent en principe être pris dans les domaines de l'orientation de l'étudiant.

Répartition horaire

Enseignement	0	heures	(0 périodes de 45 minutes)
Travail autonome	450	heures	
Total	450	heures	de travail pour ce cours

Modalités d'enseignement

[]	Ex cathedra (amphi)	[]	Frontal participatif	[X]	Atelier / Laboratoire / Séminaire
	` ' '		• •		

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

• Les anciens travaux de Bachelor sont accessibles en https://gradechelor.hesge.ch.

ISC_E51 / sISC_E53 - Internet des objets

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_E51 (4 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	estre de référence	: S5	Responsable du modu	ıle : N	lme Delphine Bechevet

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Découvrir un système électronique communicant et de le décrire sous la forme d'un schéma bloc
- Identifier les menaces et vulnérabilités inhérentes aux systèmes électroniques connectés entrant dans l'écosystème de l'IOT
- · Mettre en oeuvre une ou plusieurs techniques d'attaque et proposer le cas échéant des contre-mesures adaptées
- Choisir la bande de fréquence adéquate pour une communication sans-fil adaptée aux besoins
- Analyser si un module acheté dans le commerce respecte les normes en vigueur
- Être critique sur l'impact des Short Range Devices sur différents sujets de sociétés

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Virtualisation avancée – ISC_E511	32p	
Objets communicants – ISC_E512	36p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 51 heures (taux d'encadrement de 43%)

Travail autonome 69 heures

Total 120 heures équivalent à 4 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_E511 = 50% ISC_E512 = 50%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_E511 - Virtualisation avancée

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Comprendre les mécanismes de virtualisation et containerisation
- · Choisir la meilleure technologie pour un cas donné
- · Déployer et gérer un ensemble de machines virtuelles ou containers

Contenus

- · Concepts théoriques de la virtualisation
- · Virtualisation de plateforme
- · L'émulateur/hyperviseur QEMU/KVM
- · Virtualisation de stockage avec LVM
- · Concepts théoriques des containers
- · Containers LXC, Docker
- · Vision globale de la virtualisation

Répartition horaire

Enseignement 24 heures (32 périodes de 45 minutes)

Travail autonome 36 heures

Total 60 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- J. E. Smith, R. Nair, Virtual Machines, Elsevier, 2005.
- · H. Chirammal, P. Mukhedkar, A. Vettathu, Mastering KVM Virtualization, Packt publishing, 2016.
- J. Nickoloff, Docker in Action, Manning, 2016.

Unité d'enseignement : ISC_E512 - Objets communicants

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Choisir la bande de fréquence adéquate pour une communication sans-fil adaptée aux besoins
- · Analyser si un module acheté dans le commerce respecte les normes en vigueur
- Être critique sur l'impact des SRDs (Short Range Devices) sur différents sujets de sociétés

Contenus

- · Présentation des différentes normes et règles du jeu lors de déploiement de objets communicants (SRD
 - ETSI
 - ITU
 - IEEE
 - · FCC, etc.
- · RFID vs. BLE
 - HF, UHF
 - · Orientation innovation
 - · Mise en place d'une application utilisant la RFID
 - Tests
 - · Développement du sens critique (débats scientifique)

Répartition horaire

Enseignement 27 heures (36 périodes de 45 minutes)

Travail autonome 33 heures

Total 60 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- RFID en Ultra et Supra Haute Fréquences Théorie et Mise en œuvre, D.Paret, Dunod, 2008
- · Applications en identification radiofréquence et cartes à puces sans contact, D.Paret, Dunod, 2003
- ITU-standards
- ETSI-standards
- OFCOM
- ARCEP

ISC_E52 / sISC_E71 - Conception en systèmes embarqués

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_E52 (12 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	estre de référence	: S5	Responsable du modu	ule : N	l. Andrés Upegui

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- Comprendre les technologies System on Chip (SoC) basés sur des FPGA et microcontrôlesu.
- Concevoir et réaliser des systèmes synchrones complexes (basés sur des compteurs, machines d'états, etc) et de les simuler en VHDL
- Concevoir, réaliser et tester des interfaces programmables pour SOC sur FPGA
- Concevoir, réaliser et tester un système complet sur FPGA
- Analyser un cahier des charges et effectuer son développement, sa réalisation et son test pour un système basé sur un SoC et des interfaces.
- Réaliser un circuit imprimé (outils Altium), faire fabriquer le prototype sur machine à graver, monter lescomposants smd et les souder
- Effectuer les tests sur le système réalisé

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Conception sur FPGA en VHDL – ISC_E521	102p	
Conception systèmes hardware – ISC_E522	102p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 154 heures (taux d'encadrement de 43%)

Travail autonome 206 heures

Total 360 heures équivalent à 12 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_E521 = 50% ISC_E522 = 50%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_E521 - Conception sur FPGA en VHDL

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Connaître et comprendre les architectures des circuits numériques reconfigurables.
- Décrire une architecture numérique à l'aide du langage VHDL
- · Concevoir de systèmes numériques complexes composés de plusieurs sous-systèmes.
- Mettre en place et programmer un SoPC (System on Programmable Chip) composé de un processeur, des interfaces programmable simples, et des mémoires simples.
- · Concevoir des interfaces programmables simples.
- Comprendre des notions numériques avancées appliquées à l'architecture des processeurs tels que pipeline, mémoire cache, parallélisation d'instructions (superscalaire, VLIW), architectures multi-coeur.

Contenus

- Architecture des dispositifs numériques reconfigurables (FPGA, CPLD, PLD, ...)
- · Langage de description matériel VHDL
 - · Systèmes combinatoires
 - · Systèmes synchrones
 - · Conception hiérarchique
- · Conception des bandes de test (testbench)
- · SoPC (System on Programmable Chip)
 - · Architecture et organisation du système
 - · Modèle de registres d'une interface programmable
- · Conception d'interfaces programmables
- · Architecture avancée des processeurs :
 - Pipeline
 - · Architectures superscalaires
 - Architectures VLIW
 - · Mémoires cache
 - · Processeurs multi-coeur

Répartition horaire

Enseignement 77 heures (102 périodes de 45 minutes)
Travail autonome 103 heures
Total 180 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

• Introduction to Digital Design Using Digilent FPGA Boards, R. E. Haskell & D. M. Hanna, LBE Books, Rochester Hills, MI

Unité d'enseignement : ISC_E522 - Conception systèmes hardware

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de : * Concevoir un circuit basé autour d'un micro-contrôleur * Réaliser les schémas et le layout de ce système pour permettre la fabrication d'un circuit imprimé * Monter les composants de type smd sur le circuit * Prévoir les tests et les réaliser pour vérifier le bon fonctionnement du système * Réaliser une application programmée sur le module comme démonstrateur

Contenus

- · Apprentissage des outils de CAO Altium pour :
 - · L'utilisation et la création de librairie de composants, schématique et layout
 - Réaliser des schémas électroniques
 - · Réaliser le layout du circuit imprimé
 - Générer les fichiers pour la fabrication et le montage des circuits imprimés
- Travail en groupe pour la conception du système à réaliser
- · Fabrication du circuit par gravure
- Montage des circuits, principalement en technologie smd
- · Réalisation des tests de la carte
- · Réalisation d'une démonstration du système

Répartition horaire

Enseignement 77 heures (102 périodes de 45 minutes)
Travail autonome 103 heures
Total 180 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

Aucune

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_E53 / sISC_E72 - Communication des systèmes embarqués 2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_E53 (7 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue · Français	Sem	estre de référence	· S5	Responsable du modi	ıle · N	lme. Delphine Bechevet

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Analyser une situation, puis choisir et proposer le protocole de communication adapté au besoin
- Réaliser une transmission de données en Bluetooth Low Energy et de type socket sur un réseau WIFI
- Mettre en oeuvre une communication LoRA / LoraWAN et Nb-IOT
- · Concevoir, analyser, réaliser et tester une antenne pour systèmes embarqués

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Protocoles de communications radio – ISC_E531	34p	
Programmation des systèmes sans fils – ISC_E532	68p	
Analyse et conception d'antennes – ISC_E533	36p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 104 heures (taux d'encadrement de 49%)

Travail autonome 107 heures

Total 210 heures équivalent à 7 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_E531 = 30% ISC_E532 = 40% ISC_E533 = 30%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_E531 - Protocoles de communications radio

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Choisir et proposer le protocole de communication adapté au besoin
- · Concevoir réaliser et tester une antenne
- · Analyser une situation de communication radio

Contenus

- · Fondements de transmission sans-fil et mobile
- · Propagation radio-mobile
- · Dimensionnement de liaison sans fil et bilan
- · Systèmes sans-fil : RFID, Lora, BT, Wi-Fi
- · Antennes paraboliques et Yagi

Répartition horaire

Enseignement 25 heures (34 périodes de 45 minutes)

Travail autonome 38 heures

Total 63 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Le cours de Systèmes de télécommunications, Traité d'électricité PPR, EPFL.
- Le cours de Physique de Feynman, Electromagnétisme 1, InterEditions, 1979.
- · Foundations of Antenna Theory and Techniques, Vincent F.Fusco, Pearson education Limited, 2005.
- Antenna theory: Analysis and Design, Constantine A.Balanis, Wiley, 2005

Unité d'enseignement : ISC E532 - Programmation des systèmes sans fils

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Mettre en oeuvre une transmission de données Bluetooth de type SPP, HID à partir d'une carte électronique programmable et un terminal bluetooth générique, ou entre 2 cartes électroniques programmables
- Réaliser une transmission de données en Bluetooth Low Energy (BLE) et de type socket (TCP ou UDP) sur un réseau WIFI
- · Mettre en oeuvre une communication LoRA / LoraWAN et Nb-IOT via un module LTE-M

Contenus

- Description et utilisation d'une méthodologie de mise en oeuvre, quelque soit le type de transmission à réaliser
- Etude détaillée des modules RF permettant de réaliser la transmission de donnée demandée (Datasheet, interface de communication microcontrôleur, identification des registres de contrôle, d'état et de données, précautions d'emploi RF)
- · Programmation d'un microcontrôleur à architecture ARM permettant de piloter les modules RF à mettre en oeuvre

Répartition horaire

Enseignement 51 heures (68 périodes de 45 minutes)

Travail autonome 33 heures

Total 84 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Lea Perry. Internet of Things for Architects. January 2018. Publisher: Packt Publishing. ISBN: 9781788470599. https://www.oreilly.com/library/view/internet-of-things/9781788470599/
- Muhammad Usama bin Aftab. Building Bluetooth Low Energy Systems. April 2017. Publisher: Packt Publishing. ISBN: 9781786461087. https://www.oreilly.com/library/view/building-bluetooth-low/9781786461087/
- Madhur Bhargava. IoT Projects with Bluetooth Low Energy. August 2017. Publisher: Packt Publishing. ISBN: 9781788399449. https://www.oreilly.com/library/view/iot-projects-with/9781788399449/
- Robin Heydon. Bluetooth Low Energy: The Developer's Handbook. October 2012. Publisher: Pearson. ISBN: 9780132888394. https://www.oreilly.com/library/view/bluetooth-low-energy/9780132888394/
- Kevin Townsend, Carles Cufí, Akiba, Robert Davidson. Getting Started with Bluetooth Low Energy. May 2014. Publisher:
 O'Reilly Media, Inc. ISBN: 9781491949511. https://www.oreilly.com/library/view/getting-started-with/9781491900550/
- Ayman ElNashar, Mohamed A. El-Saidny. Practical Guide to LTE-A, VoLTE and IoT. August 2018. Publisher: Wiley. ISBN: 9781119063308. https://www.oreilly.com/library/view/practical-guide-to/9781119063308/

- Edward Insam. TCP/IP Embedded Internet Applications. September 2003. Publisher: Newnes. ISBN: 9780080474557. https://www.oreilly.com/library/view/tcpip-embedded-internet/9780750657358/
- Jean-Philippe Vasseur, Adam DunkelsInterconnecting Smart Objects with IP. July 2010. Publisher: Morgan Kaufmann. ISBN: 9780123751669. https://www.oreilly.com/library/view/interconnecting-smart-objects/9780123751652/
- Brian Amos. Hands-On RTOS with Microcontrollers. May 2020. Publisher: Packt Publishing. ISBN: 9781838826734. https://www.oreilly.com/library/view/hands-on-rtos-with/9781838826734/
- Jim Ledin. Architecting High-Performance Embedded Systems. February 2021. Publisher: Packt Publishing. ISBN: 9781789955965. https://www.oreilly.com/library/view/architecting-high-performance-embedded/9781789955965/
- Aditya GuptaThe IoT Hacker's Handbook: A Practical Guide to Hacking the Internet of Things. March 2019. Publisher: Apress. ISBN: 9781484243008. https://www.oreilly.com/library/view/the-iot-hackers/9781484243008/
- Jean-Georges Valle. Practical Hardware Pentesting. April 2021. Publisher: Packt Publishing. ISBN: 9781789619133. https://www.oreilly.com/library/view/practical-hardware-pentesting/9781789619133/

Unité d'enseignement : ISC_E533 - Analyse et conception d'antennes

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Concevoir et analyser une antenne pour systèmes embarqués
- · Réaliser et tester une antenne pour systèmes embarqués

Contenus

- · Apprentissage d'une méthode de réalisation d'antennes pour systèmes embarqués
 - · Théorie
 - · Conception
 - Simulation
 - Réalisation
 - Tests

Répartition horaire

Enseignement 27 heures (36 périodes de 45 minutes)

Travail autonome 36 heures

Total 63 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Cours de Physique de Feynman, Electromagnétisme 1, InterEditions, 1979
- Cours de Physique de Feynman, Electromagnétisme 1, InterEditions, 1979
- Antenna theory Analysis and Design, Constantine A.Balanis, Wiley, 2005

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_E61 / sISC_E81 - Systèmes embarqués intelligents

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_E61 (4 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	estre de référence	: S6	Responsable du modu	ıle : M	. Andres Upegui

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- Comprendre l'architecture et l'utilisation des réseaux de neurones artificiels (ANN)
- · Implémenter une application basée sur des ANN dans un système emabarqué
- · Comprendre les mécanismes de virtualisation et containerisation
- Déployer et gérer un ensemble de machines virtuelles ou containers

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
IA & Smart Devices – ISC_E611		33p
Sécurité IoT – ISC_E612		50p

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 62 heures (taux d'encadrement de 51%) Travail autonome 58 heures

Total 120 heures équivalent à 4 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_E611 = 40% ISC_E612 = 60%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_E611 - IA & Smart Devices

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Comprendre l'architecture et l'utilisation des réseaux de neurones artificiels (ANN)
- · Entrainer un ANN
- Implémenter une application basée sur des ANN dans un système emabarqué

Contenus

- · Adéquation et visualisation de données
- · Apprentissage, test, et validation
- Perceptron
- · Perceptron multicouches
- · Reseaux de néurones convolutionels
- · Contraintes lors du déploiement dans un système embarqué
- · Deep Learning
- Architectures matériel dédiées pour des ANNs
- · Frameworks pour ANNs emabrquées

Répartition horaire

Enseignement 25 heures (33 périodes de 45 minutes)

Travail autonome 23 heures

Total 48 heures de travail pour ce cours

Modalités d'enseignement

ſ	1	Ex cathedra ((amphi) [X	Frontal	participatif	ſ) A	telier /	/ Labora	atoire /	/ Séminaiı
---	---	---------------	--------	------	---------	--------------	---	-----	----------	----------	----------	------------

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

Aucune

Unité d'enseignement : ISC_E612 - Sécurité IoT

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e aura acquis une culture de la sécurité des systèmes électroniques de l'Internet des Objets (IOT) et devra être capable de :

- Découvrir un système électronique communicant et de le décrire sous la forme d'un schéma bloc
- Identifier les menaces et vulnérabilités inhérentes aux systèmes électroniques connectés entrant dans l'écosystème de l'IOT (capteurs, actionneurs, plateformes d'intermédiation, etc)
- · Mettre en oeuvre une ou plusieurs techniques d'attaque
- · Proposer le cas échéant des contre-mesures adaptées

Contenus

- · Concepts et vocabulaire de la sécurité matérielle
- · Description de systèmes électroniques
- · Description de vulnérabilités et menaces
- Découvertes de techniques d'attaques matérielles (non exhaustif)
 - · Attaque par canaux cachés
 - · Analyse simple, différentielle ou corrélée de la consommation électrique
 - Attaque par injection
 - · Analyse électromagnétique/son
 - · Attaque JTAG
 - Botnets

Répartition horaire

Enseignement 38 heures (50 périodes de 45 minutes)

Travail autonome 34 heures

Total 72 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- IEEE INTERNET OF THINGS JOURNAL. IEEE Xplore : https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punum-ber=6488907
- Sécurité matérielle des systèmes : Vulnérabilités des processeurs. Editions DUNOD ISBN 978-2-10-079529-1
- · Cybersecurity: Livre blanc INRIA. https://www.inria.fr/fr/livre-blanc-inria-cybersecurite

- Cyber-Physical Systems Security : A Survey. IEEE DOI : 10.1109/JIOT.2017.2703172
- Physical-Layer Security of 5G Wireless Networks for IoT : Challenges and Opportunities. IEEE DOI:10.1109/JIOT.2019.2927379
- A Comprehensive Survey on Internet of Things (IoT): Toward 5G Wireless Systems. IEEE DOI: 10.1109/JIOT.2019.2948888
- IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices. IEEE DOI: 10.1109/JIOT.2019.2935189

ISC_E62 / sISC_E82 - Pratiques métier en systèmes embarqués 2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_E62 (8 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue · Français	Sem	estre de référence	· S6	Responsable du modi	ıle • N	lme Delnhine Rechevet

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- concevoir, développer et réaliser un système informatique matériel
- développer un système sur FPGA avec un processeur "softcore" et des interfaces spécialisés specifiquement développés
- · montrer ses connaissances en industrialisation de systèmes embarqués

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Projet en systèmes embarqués – ISC_E621		40p
Projet sur FPGA – ISC_E622		40p
Industrialisation d'un système embarqué – ISC_E623		44p

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 93 heures (taux d'encadrement de 40%)

Travail autonome 147 heures

Total 240 heures équivalent à 8 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_E621 = 30% ISC_E622 = 35% ISC_E623 = 35%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_E621 - Projet en systèmes embarqués

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Réaliser un petit système embarqué de la conception des schémas à la réalisation du circuit imprimé
- Montage des circuits sur une machine automatique Pick & Place
- · Test des circuits
- · Mise en oeuvre des outils de développement pour micro-contrôleur pour réaliser les tests de base de la carte réalisée

Contenus

- · Ce cours fait suite à l'apprentissage des outils de conception et réalisation d'un circuit imprimé
- Il est réalisé sous la forme de cours intégré à la pratique
- Un cahier des charges est donné aux étudiant.e.s comprenant la réalisation d'un circuit avec au minimum :
 - · un micro-contrôleur,
 - · de la mémoire de sauvetage de données
 - · d'un système de communication
 - un capteur spécifique au choix, par example de mesure d'O2, de température et l'étudiant.e devra réaliser une petite station météo
- la conception est à réaliser en cherchant dans les datasheet des fabricants
- · le schéma est conçu et dessiné
- · le layout est réalisé
- · le circuit est préparé pour l'envoi en fabrication
- · la carte est montée et testée
- une petite application de démonstration est développée, généralement en C

Répartition horaire

Enseignement 30 heures (40 périodes de 45 minutes)

Travail autonome 42 heures

Total 72 heures de travail pour ce cours

Modalités d'enseignement

Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Chacune des phases est évaluée et participe à la note finale. Une présentation orale du travail est effectuée en fin de semestre. Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

Unité d'enseignement : ISC_E622 - Projet sur FPGA

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

· Analyser, développer et réaliser une application sur FPGA

Contenus

Sur un système comprenant une carte FPGA, l'étudiant.e devra développer une application en VHDL avec un micro-processeur embarqué (softcore ou hardcore) et des interfaces répondant à une application spécifique.

Répartition horaire

Enseignement 30 heures (40 périodes de 45 minutes)

Travail autonome 54 heures

Total 84 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

Unité d'enseignement : ISC_E623 - Industrialisation d'un système embarqué -

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

Déterminer des choix pour réaliser un système matériel en respectant des critères de :

- · performances,
- · consommation,
- · prix,
- · disponibilité des composants,
- · possibilité de fabrication,
- · possibilité de tests
- · optimisation d'un code,
- · cycle de vie d'un produit (mises à jour),
- · sécurité du firmware.

Contenus

Ce cours est complémentaire aux 2 autres cours de ce module. Principalement sur le projet de systèmes embarqués où la partie technique est principalement développée. Dans ce cours une analyse de l'industrilalisation possible sera effectuée aves des recherches de fabricants en Suisse ou à l'étranger, des conditions de quantités pour l'approvisionnement des composants et de leur coût. La phase de la fabrication et des coûts des tests y sont également abordés

Répartition horaire

Enseignement 33 heures (44 périodes de 45 minutes)

Travail autonome 51 heures

Total 84 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_L51 / sISC_L53 - Systèmes mobiles

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_L51 (5 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	estre de référence	: S5	Responsable du modi	ule : I	M. Stéphane Malandain

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Développer des applications pour Android en java ou kotlin
- · Comprendre les contraintes matérielles inhérentes à ce type de device et savoir réaliser des interfaces graphiques adaptées
- · Connaître les spécificités et fonctions avancées des smartphones et tablettes
- Comprendre les mécanismes de virtualisation et containerisation
- Déployer et gérer un ensemble de machines virtuelles ou containers

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Développement mobile – ISC_L511	51p	
Virtualisation avancée – ISC_L512	32p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 62 heures (taux d'encadrement de 41%)

Travail autonome 88 heures

Total 150 heures équivalent à 5 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_L511 = 60% ISC_L512 = 40%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_L511 - Développement mobile

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Développer des applications pour Android en java ou kotlin
- · Comprendre les contraintes matérielles inhérentes à ce type de device et savoir réaliser des interfaces graphiques adaptées
- · Connaître les spécificités et fonctions avancées des smartphones et tablettes

Contenus

- · Programmation en Kotlin pour androïd (Activities, Service, Content providers, Intents, Broadcast receivers)
- Notions de design d'interfaces liées au support (Smartphones et tablettes)
- · Les Architectures components
- · Android Sensors : cas pratiques d'applications

Répartition horaire

Enseignement 38 heures (51 périodes de 45 minutes)

Travail autonome 52 heures

Total 90 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- L'art du développement Android, Grant Allen, Pearson éducation, 2012.
- Android 4 : Les fondamentaux du développement d'applications Java, Nazim Benbourahla, ENI, 2012.
- Android 4 : Développement d'applications avancées, Reto Meier, Person Education, 2012.
- Développez pour Android, Cyril Mottier et Ludovic Perrier, 2011.

Unité d'enseignement : ISC_L512 - Virtualisation avancée

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Comprendre les mécanismes de virtualisation et containerisation
- · Choisir la meilleure technologie pour un cas donné
- · Déployer et gérer un ensemble de machines virtuelles ou containers

Contenus

- · Concepts théoriques de la virtualisation
- · Virtualisation de plateforme
- · L'émulateur/hyperviseur QEMU/KVM
- · Virtualisation de stockage avec LVM
- · Concepts théoriques des containers
- · Containers LXC, Docker
- · Vision globale de la virtualisation

Répartition horaire

Enseignement 24 heures (32 périodes de 45 minutes)

Travail autonome 36 heures

Total 60 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- J. E. Smith, R. Nair, Virtual Machines, Elsevier, 2005.
- · H. Chirammal, P. Mukhedkar, A. Vettathu, Mastering KVM Virtualization, Packt publishing, 2016.
- J. Nickoloff, Docker in Action, Manning, 2016.

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_L52 / sISC_L71 - Ingénierie logicielle

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_L52 (10 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue · Français	Sem	estre de référence	· S5	Responsable du modu	ıle · N	1. Nabil Abdennadhe

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Identifier les phases, activités, objectifs et rendus dans un processus de développement logiciel
- Choisir un processus/méthodologie de développements logiciels appropriés à ses besoins
- · S'intégrer dans une équipe de développement et appliquer un processus de développement donné
- · Utiliser les infrastructures Cloud et la technologie container
- · Choisir la "technologie" et l'infrastructure appropriée (container, Cloud) en fonction de ses besoins
- Evaluer la pertinence du concept de la distribution pour résoudre un problème donné
- Choisir le type de l'algorithme distribué à concevoir, le "paradigme de programmation" et la technologie adéquate pour une application distribuée
- · Concevoir et développer des services Web et proposer la structure logicielle adéquate

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Génie logiciel – ISC_L521	64p	
Déploiement et Cloud – ISC_L522	64p	
Systèmes distribuées – ISC_L523	48p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 132 heures (taux d'encadrement de 44%)

Travail autonome 168 heures

Total 300 heures équivalent à 10 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_L521 = 35% ISC_L522 = 35% ISC_L523 = 30%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_L521 - Génie logiciel

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Identifier les différentes phases et activités dans un processus de développement logiciel
- · Identifier les objectifs et les rendus des différentes phases d'un développement logiciel
- · Connaître et/ou maitriser les outils CASE nécessaires au développement logiciel
- · Choisir un processus/méthodologie de développements logiciels appropriés à ses besoins
- · S'intégrer dans une équipe de développement et appliquer un processus de développement donné

Contenus

- · Introduction au Génie Logiciel
- · Les phases de développement logiciel
- · Processus de développement classiques / Itératifs / Agiles
- · Ingénierie des besoins
- · Conception architecturale et détaillée
- · Réalisation de projet de développement logiciel
- · Les outils de développement : Maquettage, Forges, outils de test, outils SCRUM

Répartition horaire

Enseignement 48 heures (64 périodes de 45 minutes)

Travail autonome 57 heures

Total 105 heures de travail pour ce cours

Modalités d'enseignement

[]	Ex cathedra (amphi)	[X]	Frontal participatif	[] Atelier / Laboratoire / Séminai
----	---------------------	-----	----------------------	---	-----------------------------------

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- · Roger S. Pressman. Software Engineering: A Practitioner's Approach. McGraw-Hill Higher International, 7th or 8th Edition
- · Software Engineering 9: http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/index.html
- · Software Engineering Textbook : http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf

Unité d'enseignement : ISC_L522 - Déploiement et Cloud

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Utiliser les infrastructures Cloud (Infrastructure as a Service : IaaS)
- · Choisir l'infrastructure Cloud la mieux adaptée à ses besoins
- · Sécuriser les instances Cloud
- · Utiliser la technologie container
- · Choisir la "technologie" appropriée (container, Cloud) en fonction de ses besoins

Contenus

- OpenStack
- Azure
- Amazon

La mise en oeuvre du contenu est faite en lien avec le projet de génie logiciel.

Répartition horaire

Enseignement 48 heures (64 périodes de 45 minutes) Travail autonome 57 heures

Total 105 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

Unité d'enseignement : ISC_L523 - Systèmes distribués

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Reconnaître s'il doit (ou non) utiliser le concept de la distribution pour résoudre un problème donné
- · Choisir le type de l'algorithme distribué à concevoir : synchrone ou asynchrone, centralisé ou décentralisé, etc
- · Choisir le "paradigme de programmation" et la technologie adéquate pour le développement de son application distribuée
- Concevoir et développer des services Web de type REST et SOAP et proposer la structure logicielle adéquate de son service Web

Contenus

Partie théorique : les algorithmes distribués de base.

- Convergecast
- Broadcast
- · Construction d'arbres de recouvrement
- · Parcours de réseaux ou de graphes
- · Calcul des plus courts chemins
- · Algorithmes d'élection dans les systèmes distribués
- · Algorithmes de recherche de contenus dans les systèmes pair-à-pair

Ces algorithmes sont étudiés dans un contexte général : le réseau cible peut-être un réseau informatique, un réseau télécom ou un réseau de noeuds mobiles et/ou embarqués.

Partie pratique : outils de développement.

· Sockets (rappel)

· Web services : REST et SOAP

WebSockets

La majorité des supports de cours utilisés sont en anglais.

Répartition horaire

Enseignement 36 heures (48 périodes de 45 minutes) Travail autonome 54 heures

Total 90 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Valmir C. Barbosa. An introduction to Distributed Algorithms. The MIT Press, Cambridge, Massachusetts, London, England, 1996.
- Georges Coulouris and all. Distributed Systems, concepts and design, Pearson Education Limited, 2011
- Andrew S. Tanenbaum, Maarten van Steen. Distributed systems : Principles and Paradigms. Prentice Hall, 2006.

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_L53 / sISC_L72 - Intelligence et traitement de données

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_L53 (8 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue · Français	Sem	estre de référence	· S5	Responsable du modi	ıle · N	I. Guido Bologr

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Comprendre le contexte d'application du Machine Learning
- · Résoudre des problèmes pratiques de classification/régression de données
- Connaître les principes de l'apprentissage supervisé et non-supervisé
- · Utiliser un modèle de réseau convolutionnel
- Connaître et comprendre quelques techniques d'optimisation importantes et maîtriser leur application

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
IA, Machine Learning et Big Data – ISC_L531	80p	
Méthodes d'optimisation – ISC_L532	64p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 108 heures (taux d'encadrement de 45%)

Travail autonome 132 heures

Total 240 heures équivalent à 8 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_L531 = 60% ISC_L532 = 40%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_L531 - IA, Machine Learning et Big Data

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Déterminer si un problème doit être abordé algorithmiquement ou par Machine Learning
- Résoudre des problèmes pratiques de classification/régression de données
- · Configurer correctement un modèle d'apprentissage
- · Comprendre le principe de descente du gradient pour l'apprentissage supervisé
- · Utiliser un modèle de réseau convolutionnel

Contenus

- Introduction à la fouille des données (« Data Mining »)
- · Mesure de performance des modèles
- · Distances et Clustering
- · Apprentissage supervisé
 - · Plus proche voisin
 - · Arbres de décision
 - · Classifieur Bayésien, régression linéaire et logistique
 - Perceptron
 - · Perceptron multi-couches
 - Support Vector Machines (SVM)
- · Les ensembles de modèles
- · Les réseaux convolutionnels

Répartition horaire

Enseignement 60 heures (80 périodes de 45 minutes) Travail autonome 72 heures

Total 132 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Bishop CM. Neural Networks for Pattern Recognition. New York: Oxford University Press, 1995.
- Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning: Data mining, Inference, and Prediction. New York: Springer Verlag, 2001.

- Haykin S. Neural Networks : A Comprehensive Foundation. New York : Macmillan College Publishing, 1994.
- Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press, 2016.
- Hertz J, Krogh A, Palmer RG, Horner H. Introduction to the theory of neural computation. Redwood City, CA: Addison-Wesley, 1991.

Unité d'enseignement : ISC_L532 - Méthodes d'optimisation

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Connaître et comprendre quelques techniques d'optimisation importantes
- · Résoudre des problèmes pratiques
- · Connaître les notions théoriques utiles à la mise en œuvre de chaque méthode

Contenus

Les méthodes d'optimisation sont des outils indispensables pour l'ingénieur-e. Leur champ d'application s'étend de la finance à l'ingénierie en passant par les sciences pures. Ces techniques permettent souvent d'obtenir une bonne solution en un temps raisonnable à des problèmes complexes tels que l'extraction de connaissances à partir d'une base de données (data mining) ou l'optimisation combinatoire.

- · Modélisation d'un problème d'optimisation
- Programmation linéaire et en nombres entiers
- · Recherche locale et recherche globale
- Recherche aléatoire (méthode de Monte-Carlo)
- · Algorithme du simplexe de Nelder-Mead
- · Méthode du recuit simulé
- · Méthode de recherche tabou
- · Algorithmes génétiques
- · Algorithmes de fourmis

Répartition horaire

Enseignement 48 heures (64 périodes de 45 minutes)

Travail autonome 60 heures

Total 108 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- J. Dréo, A. Pétrowski, P. Siarry et E. Taillard, Métaheuristiques pour l'optimisation difficile, Eyrolles 2003.
- R. Faure, B. Lemaire et C. Picouleau. Précis de recherche opérationnelle : méthodes et exercices d'application, 5ème édition, Dunod, 2000.
- · G. Sierksma, Linear and Integer Programming: Theory and Practice, 2nd edition, CRC Press, 2002.

• D. de Werra, T. M. Liebling et J.-F. Hêche, Recherche opérationnelle pour ingénieurs, Presses polytechniques et universitaires romandes, 2003.

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_L61 / sISC_L81 - Développement logiciel en entreprise

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_L61 (5 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	estre de référence	: S6	Responsable du modi	ıle : N	/I. Stéphane Malandain

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Choisir un processus de développement adapté à un projet donné
- · Sélectionner les pratiques métiers appropriées et les mettre en place au sein d'un groupe
- Réaliser un projet complet en groupe en adoptant les techniques génie logiciel et gestion de projet adéquates
- · Connaitre les paradigmes de programmation fonctionnelle et orienté-objet
- Utiliser une approche fonctionnelle et orientée-objet pour modéliser et résoudre un problème

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Pratiques métiers en développement logiciel – ISC_L611		50p
Programmation fonctionnelle – ISC_L612		33p

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 62 heures (taux d'encadrement de 41%)

Travail autonome 88 heures

Total 150 heures équivalent à 5 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_L611 = 60% ISC_L612 = 40%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_L611 - Pratiques métiers en développement logiciel

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Choisir un processus de développement adapté à un projet donné
- · Sélectionner les pratiques métiers appropriées
- Mettre en place les pratiques métier pour un fonctionnement en groupe
- Réaliser un projet de A à Z en groupe et en adoptant les techniques Génie Logiciel et Gestion de projet adéquates

Contenus

- Ce cours est basés sur un projet pratique dans lequel les étudiants travaillent en groupe et appliquent toutes les techniques et pratiques vues dans le reste des cours, essentiellement les cours d'ingénierie OO, de Génie Logiciel et de Gestion de projet.
- · Les projets peuvent être proposés par nos partenaires industriels ou nos équipes de recherche interne.
- Durant ce cours, le focus est mis sur la réalisation et de déploiement.

Répartition horaire

Enseignement 38 heures (50 périodes de 45 minutes)

Travail autonome 52 heures

Total 90 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (Projet, présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Roger S. Pressman. Software Engineering: A Practitioner's Approach. McGraw-Hill Higher International, 7th or 8th Edition
- Software Engineering 9 : http ://ifs.host.cs.st-andrews.ac.uk/Books/SE9/index.html
- Software Engineering Textbook : http ://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pd

Unité d'enseignement : ISC_L612 - Programmation fonctionnelle

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Maîtriser la syntaxe de base du langage Scala
- Expliquer les paradigmes de programmation fonctionnelle et orienté-objet
- Utiliser la programmation fonctionnelle pour résoudre un problème
- · Modéliser un problème en utilisant la programmation orientée-objet

Contenus

- · Langage Scala
- · Programmation fonctionnelle
- · Fonctions lambda
- · Manipulation fonctionnelle de collections
- Principes de la programmation orientée-objet
- Introduction aux patrons de conception (design patterns)

Répartition horaire

Enseignement 25 heures (33 périodes de 45 minutes)

Travail autonome 35 heures

Total 60 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Programming in Scala, 3rd ed., Martin Odersky et al., Artima, 2016.
- Scala for the Impatient, 2nd ed, Cay Horstmann, Addison-Wesley, 2016.
- Functional Programming in Scala, Paul Chiusano and Runar Bjarnason, Manning, 2014.
- Design Patterns, Erich Gamma et Al. Addison-Wesley, 1994

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_L62 / sISC_L82 - Systèmes d'exploitation avancés

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_L62 (7 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	estre de référence	· S6	Responsable du mod	ule · N	/ Florent Glüc

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- Connaître de manière approfondie les concepts clés d'un système d'exploitation et de l'architecture PC
- Concevoir et développer, depuis zéro, un système d'exploitation simple
- · Connaître les problématiques et les modèles de calcul liées à la mise en oeuvre du parallélisme
- Programmer des algorithmes parallèles

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Calcul haute performance – ISC_L621		50p
Programmation système avancée – ISC_L622		66p

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 87 heures (taux d'encadrement de 41%)

Travail autonome 123 heures

Total 210 heures équivalent à 7 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_L621 = 50% ISC_L622 = 50%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_L621 - Calcul haute performance

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Connaître les problématiques liées à la mise en oeuvre du parallélisme (communications interprocesseurs, déséquilibre de charge, synchronisation, algorithmique,...)
- Connaître les problématiques liées au Big Data
- · Connaître les modèles de calcul parallèle sur cluster, sur carte graphique (GPU) et MapReduce
- · Programmer des algorithmes parallèles sur cluster et sur GPU
- Effectuer une analyse de complexité d'un algorithme parallèle (établir les formules de speedup, efficacité, scalabilité)
- Effectuer des mesures de performances sur cluster
- · Programmer des algorithmes de Big Data

Contenus

- · Notions de parallélisme
- · Gain et limitations de performances (complexité, speedup, efficacité, scalabilité)
- Réseaux d'interconnexion statiques et fonctions de communications
- Algorithmes parallèles (tris, multiplication matricielle, ...)
- Cartes graphiques (GPU) et modèle de programmation
- Quelques applications simples sur GPU (fractales, automates cellulaires)
- · Introduction au Big Data
- Modèle MapReduce
- Algorithmes Big Data (classification, régression, correspondance par similarité, ...)

Répartition horaire

Enseignement 38 heures (50 périodes de 45 minutes)

Travail autonome 67 heures

Total 105 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Parallel Computing: Design and Analysis
of Algorithms. 2nd edition, Addison Wesley, 2003.

- Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers. Prentice Hall Inc, New Jersey, 1999.
- Ian Foster. Designing and Building Parallel Programs. AddisonWesley, 1995.
- Aaftab MunsAhi, Benedict Gaster, Timothy G. Mattson, James Fung, Dan Ginsburg. OpenCL Programming Guide. 1st edition, AddisonWesley, 2011.
- · Matthew Scarpino. OpenCL in Action: How to Accelerate Graphics and Computations. Manning Publications, 2011
- David R. Kaeli, Perhaad Mistry, Dana Schaa, Dong P. Zhang. Heterogeneous Computing with OpenCL 2.0. 3rd Edition. Morgan Kaufmann, 2015.
- Davy Cielen, Arno Meysman, and Mohamed Ali. Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools. 1st edition, Manning Publications, 2016.
- Arshdeep Bahga and Vijay Madisetti. Big Data Science & Analytics : A HandsOn Approach. 1st edition, www.handson booksseries.com/bigdata.html, 2016.
- KuanChing Li, Hai Jiang, Laurence T. Yang, and Alfredo Cuzzocrea. Big Data: Algorithms, Analytics, and Applications. 1st edition, Chapman and Hall/CRC, 2015.

Unité d'enseignement : ISC_L622 - Programmation système avancée

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Comprendre de manière approfondie les concepts clés d'un système d'exploitation
- · Obtenir une meilleure compréhension de l'architecture PC
- · Concevoir et développer, depuis zéro, un système d'exploitation simple pour architecture x86

Contenus

- · Processus de compilation
- · Edition des liens
- · Architecture IA-32 et assembleur
- · Processus de boot et bootloader
- Périphériques : affichage, clavier, timer, PIC, disque
- Gestion de la mémoire : virtualisation et protection
- Interruptions et exceptions
- · Systèmes de fichiers
- · Mode noyau et mode utilisateur, appels systèmes
- · Gestion des tâches utilisateur

Répartition horaire

Enseignement 50 heures (66 périodes de 45 minutes)

Travail autonome 55 heures

Total 105 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Remzi H. et Andrea C. Arpaci-Dusseau. Operating Systems : Three Easy Pieces. Arpaci-Dusseau Books, 2014.
- A. Silberschatz, P. B. Galvin, G. Gagne. Operating System Concepts (9th Edition), 2014.
- Thomas W. Doeppner. Operating Systems in Depth, Wiley, 2010.
- · A. Tanenbaum. Modern Operating Systems (3rd Edition), 2008.
- http://wiki.osdev.org/

ISC_S51 / sISC_S53 - IoT et télécommunications

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_S51 (5 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	estre de référence	: S5	Responsable du modi	ule : N	I. Tewfig El-Maliki

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- Choisir le protocole de communication et la bande de fréquence pour une communication adaptée aux besoins
- · Concevoir réaliser et tester une antenne pour systèmes embarqués
- · Analyser une situation de communication donnée et si un module du commerce respecte les normes en vigueur
- Être critique sur l'impact des SRDs (Short Range Devices) sur différents sujets de sociétés

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Services et applications de télécoms – ISC_S511	51p	
Objets communicants – ISC_S512	36p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 65 heures (taux d'encadrement de 43%) Travail autonome 85 heures

Total 150 heures équivalent à 5 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_S511 = 60% ISC_S512 = 40%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_S511 - Services et applications de télécoms

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Choisir et proposer le protocole de communication adapté au besoin
- · Concevoir réaliser et tester une antenne pour systèmes embarqués
- · Analyser une situation de communication donnée

Contenus

- · Fondements de transmission sans-fil et mobile
 - · Propagation radio-mobile
 - Dimensionnement de liaison sans fil et bilan
 - · Systèmes sans-fil : RFID, Lora, BT, Wi-Fi
 - · Antennes paraboliques et Yagi
- · Apprentissage d'une méthode de réalisation d'antennes pour systèmes embarqués
 - · Théorie
 - · Conception
 - Simulation
 - Réalisation
 - Tests
- Apprentissage d'une méthode d'analyse des communications sans fil (adaptées aux systèmes embarqués)

Répartition horaire

Enseignement	38	neures	(51 periodes de 45 minutes)
Travail autonome	52	heures	
Total	90	heures	de travail pour ce cours

Modalités d'enseignement

	[]	Ex cathedra (am	(idar	X1	Frontal participatif	[]	Atelier / Laborato	ire /	Séminaire
--	-----	-----------------	-------	----	----------------------	-----	--------------------	-------	-----------

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- ITU-standards / ETSI-standards
- OFCOM
- ARCEP
- Le cours de Systèmes des télécommunications, Traité d'électricité PPR, EPFL
- Le cours de Physique de Feynman, Electromagnétisme 1, InterEditions, 1979

- Foundations of Antenna Theory and Techniques, Vincent F.Fusco, Pearson education Limited, 2005
- Antenna theory Analysis and Design, Constantine A.Balanis, Wiley, 2005

Unité d'enseignement : ISC_S512 - Objets communicants

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Choisir la bande de fréquence adéquate pour une communication sans-fil adaptée aux besoins
- · Analyser si un module acheté dans le commerce respecte les normes en vigueur
- Être critique sur l'impact des SRDs (Short Range Devices) sur différents sujets de sociétés

Contenus

- Présentation des différentes normes et règles du jeu lors de déploiement de objets communicants (SRD)
 - ETSI
 - ITU
 - IEEE
 - · FCC, etc.
- · RFID vs. BLE
 - HF, UHF
 - · Orientation innovation
 - · Mise en place d'une application utilisant la RFID
 - Tests
 - Développement du sens critique (débats scientifique)

Répartition horaire

Enseignement 27 heures (36 périodes de 45 minutes)

Travail autonome 33 heures

Total 60 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- RFID en Ultra et Supra Haute Fréquences Théorie et Mise en œuvre, D.Paret, Dunod, 2008
- Applications en identification radiofréquence et cartes à puces sans contact, D.Paret, Dunod, 2003
- · ITU-standards
- ETSI-standards
- OFCOM
- ARCEP

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_S52 / sISC_S71 - Sécurité des systèmes d'information 1

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_S52 (5 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	estre de référence	: S5	Responsable du modu	ıle : N	/lme Noria Foukia

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Connaître les principes de gestion et protection mémoire
- Connaître le fonctionnement du système des permissions dans un OS
- · Améliorer la sécurité d'un OS de base
- Surveiller le bon fonctionnement de l'OS et déceler des attaques
- Distinguer les problèmatiques de sécurité liées à la sécurité de systèmes virtualisés vs. non-virtualisés, et décrire les problèmes sous-jacents
- · Connaître les différentes architectures des infrastructures virtuelles ainsi que leur impact sur la sécurité informatique
- · Savoir mettre en oeuvre une politique de sécurité dans un système d'exploitation virtualisé
- Comprendre le fonctionnement théorique des techniques de virtualisation de réseaux

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Sécurité des systèmes d'exploitation – ISC_S521	51p	
Virtualisation et sécurité – ISC_S522	48p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 74 heures (taux d'encadrement de 49%)

Travail autonome 76 heures

Total 150 heures équivalent à 5 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_S521 = 50% ISC_S522 = 50%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_S521 - Sécurité des systèmes d'exploitation

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Connaître et comprendre les mécanismes de sécurité de base d'un OS
- · Installer et configurer de façon plus sûre les OS
- · Accéder de façon sécurisée à un OS

Contenus

- · Sécurité hors OS
- · Démarrage de l'OS
- · Authentification, sécurité des mots de passe
- · Unix/Linux, bases, système de fichiers, permissions, ACLs
- · Unix/Linux élévation de privilèges, sudoers
- · Linux processus, manipulations, droits
- · Fichiers journaux, NTP
- · Notifications sur le système de fichiers : inotify
- · Modules d'authentification enfichables (PAMs)
- · Authentification multifacteurs
- · Pare-feu de l'OS
- · Accès sécurisés, furtifs

Répartition horaire

Enseignement 38 heures (51 périodes de 45 minutes)

Travail autonome 37 heures

Total 75 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (2 travaux écrits et 1 TP).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre.

Références bibliographiques

· hyperliens dans les diapositives

Unité d'enseignement : ISC_S525 - Virtualisation et sécurité

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Distinguer les problèmatiques de sécurité liées à la sécurité de systèmes virtualisés de celles liées aux systèmes non virtualisés.
- Décrire les problèmes sous-jacent à la virtualisation de ressources et à la sécurité (isolation mémoire, répartition de ressources)
- Connaître les différentes architecture des infrastructures virtuelles ainsi que leur impact sur la sécurité informatique.
- · Savoir mettre en oeuvre une politique de sécurité dans un système d'exploitation virtualisé.
- Décrire les structures de données systèmes et réseau qui permettent d'effectuer les opération classiques d'AAA.
- Comprendre le fonctionnement théorique des techniques de virtualisation de réseaux (VLAN/VRF/VPN/SDN)

Contenus

- · Introduction générale
- · Sécurité et virtualisation dans les systèmes d'exploitation
- · Sécurité et virtualisation dans les réseaux

Répartition horaire

Enseignement 36 heures (48 périodes de 45 minutes) Travail autonome 39 heures

Total 75 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Tal Garfinkel et Al, "When Virtual is Harder than Real: Security Challenges in Virtual Machine Based Computing Environments", HotOS 2005, Santa Fe, New Mexico, USA
- Tal Garfinkel et Al "What virtualization can do for security", Usenix Login, Décembre 2007, numéro 6

ISC_S53 / sISC_S72 - Sujets en sécurité

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_S53 (8 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	estre de référence	: S5	Responsable du modu	ule : N	lme. Noria Foukia

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Connaître des aspects de l'informatique légale (digital forensics) et les questions de traces numériques
- Appréhender les notions de traces et preuves numériques dans un environnement litigieux ou criminel
- · Utiliser certains outils dédiés de forensics
- Effectuer une démarche d'évaluation et de gestion des risques en entreprise, notamment de leur système d'information
- Gérer de façon distante une petite infrastructure composée de postes clients, serveurs et infrastructure réseau
- · Auditer et utiliser les outils d'analyses pertinents

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Forensics – ISC_S532	68p	
Gestion et évaluation des risques – ISC_S533	64p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 99 heures (taux d'encadrement de 42%)

Travail autonome 141 heures

Total 240 heures équivalent à 8 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_S532 = 50% ISC_S533 = 50%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

Détail des pré-requis :

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_S532 - Forensics

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Connaître les aspects principaux de la science forensique numérique (digital forensics)
- · Appréhender la notion de trace numérique, dans un environnement litigieux ou criminel
- Identifier les supports de traces numériques pertinents dans un contexte d'enquête
- Connaître quelques techniques de prélèvement de traces numériques
- Utiliser certains outils dédiés de l'informatique légale
- · Produire un rapport d'investigation technique

Contenus

- Introduction au prélèvement de traces numériques
- · Utilisation d'outils dédiés à la science forensique numérique pour prélever des traces numériques
- En particulier, extraction d'une image disque pour différents systèmes d'exploitation
- · Introduction à la récupération des données supprimées (carving) de divers systèmes d'exploitation
- · Production d'un rapport d'investigation technique numériques professionnels selon une méthode juridique

Répartition horaire

Enseignement	51	heures	(68 périodes de 45 minutes)
Travail autonome	69	heures	
Total	120	heures	de travail pour ce cours

Modalités d'enseignement

[]	Ex cathedra (amphi)	[X]	Frontal participatif	[]	Atelier / Laboratoire / Séminaire
----	---------------------	-----	----------------------	----	-----------------------------------

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

• ENFSI Guidelines, https://enfsi.eu/wp-content/uploads/2016/09/m1_guideline.pdf

Unité d'enseignement : ISC_S533 - Gestion et évaluation des risques

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Effectuer une démarche d'évaluation et de gestion des risques en entreprie
- · Appliquer cette démarche aux systèmes d'information
- · Associer différents outils de gestion
- · Auditer et utiliser les outils d'analyses pertinents

Contenus

- · Méthodologie d'identification et d'évaluation des risques
- Étude de stratégies et méthodologie de gestion des risques
- Analyse de risques pratiques
- Gestion d'un parc informatique (PC) sous l'angle de l'analyse de risques

Répartition horaire

Enseignement 48 heures (64 périodes de 45 minutes)

Travail autonome 72 heures

Total 120 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

• Darsa J-D (2016), La gestion des risques en entreprise : identifier, comprendre, maîtriser. 4e éd. Le Mans : Gereso éditions

Haute école du paysage, d'ingénierie et d'architecture de Genève

ISC_S54 / sISC_S71 - Sécurité des systèmes d'information 2

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_S54 (5 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue · Français	Sem	estre de référence	· S5	Responsable du mod	ule · N	Ime Noria Fouk

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Connaître les concepts fondamentaux de la confiance numérique : de l'identity management à l'e-réputation
- · Savoir définir une politique de gestion de la réputation en ligne d'une entité et des outils associés
- Connaître comment la gestion de la réputation en ligne s'intègre dans le trust management
- Estimer et classifier les divers risques que peut subir une infrastructure informatique
- Evaluer l'impact d'une perte de données stockées sur des medias physiques ou virtuels
- Connaître les méthodes et limites des technologies d'archivages de longues durées
- · Se renseigner sur les diverses règlementations relative aux stockage des données et de la sphère privée

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Identité numérique et e-réputation – ISC_S541	48p	
Gestion et audit des systèmes d'information – ISC_S542	51p	

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 74 heures (taux d'encadrement de 49%)

Travail autonome 76 heures

Total 150 heures équivalent à 5 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_S541 = 50% ISC_S542 = 50%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

Détail des pré-requis :

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC S541 - Identité numérique et e-réputation

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Connaître les concepts fondamentaux de la confiance numérique : de l'identity management à l'e-réputation
- · Connaître les différentes étapes de la gestion de la réputation en ligne
- · Savoir définir une politique de gestion de la réputation en ligne d'une entité
- · Savoir mettre en place les meilleurs outils pour gérer au mieux la réputation en ligne d'une entité
- · Connaître comment la gestion de la réputation en ligne s'intègre dans le trust management

Contenus

De plus en plus de personnes, marques et entreprises sont conscientes qu'elles peuvent avoir une certaine réputation sur le Web comme dans le monde réel à cause des nombreuses informations qu'elles, leurs clients ou leurs amis laissent sur le Web. Elles veulent surtout voir si des informations n'entachent pas leur réputation. Or il est difficile de surveiller ces informations sans utiliser des outils de gestion de réputation en ligne. De plus, la gestion de la réputation en ligne ne s'arrête pas qu'à la surveillance. En effet, la gestion de la réputation comprend aussi l'analyse de ses sources agissant sur la réputation d'une entité et la mise en place d'actions pour avoir une influence sur ses sources et la réputation de cette entité.

Ce cours, en plus de donner un tour d'horizon de ces différentes étapes de la gestion de la réputation en ligne, permet de prendre en main les différents outils existant, gratuits ou payants, pour la gestion de la réputation en ligne. Enfin, à cause d'une couche technique d'identité numérique plus ou moins fiable, différentes attaques sont possibles. Ces attaques sont présentées ainsi que leurs mitigations potentielles.

- Concepts fondamentaux de l'identité et de la réputation
- Historique de l'identité numérique à l'e-réputation
- Choisir une politique de gestion d'e-réputation
- Surveiller l'e-réputation en choisissant l'outil de veille le plus adapté
- · Influencer l'e-réputation
- De la réputation en ligne au trust management
- Moteurs de confiance en ligne et calculs d'e-réputation résistant aux attaques

Répartition horaire

Enseignement 36 heures (48 périodes de 45 minutes)

Travail autonome 39 heures

Total 75 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- J.-M. Seigneur. e-Reputation and Online Reputation Management Survey. Book chapter in Computer and Information Security Handbook. Third Edition, Morgan Kauffman, Elsevier, ISBN: 978-0-12-803843-7, 2017.
- T. El Maliki and J.-M. Seigneur. Identity and User Management. Book chapter in Managing Information Systems. Second Edition, ISBN-13: 978-0124166882, Syngress, Elsevier, 2014.
- J.-M. Seigneur. Social Trust of Virtual Identities. Book chapter in Computing with Social Trust and Reputation. ISBN 978-1-84800-355-2, Springer, 2008.

Unité d'enseignement : ISC_S542 - Gestion et audit des SI

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Estimer et classifier les divers risques que peut subir une infrastructure informatique
- Evaluer l'impact d'une perte de données stockées sur des medias physiques ou virtuels
- · Connaitre les spécificités des nouveaux services IPv6 (DHCPv6, DNSv6, protocoles de routages IPv6)
- · Connaître les méthodes et limites des technologies d'archivages de longues durées
- Se renseigner sur les diverses règlementations (cantonal, fédéral et européenne) relative aux stockage des données et de la sphère privée

Contenus

• Etude des besoins et contraintes dans la création de salles serveurs ou datacenter (dimensionnement électrique, climatisation, redondance, sécurité d'accès, ...)

Répartition horaire

Enseignement 38 heures (51 périodes de 45 minutes)

Travail autonome 37 heures

Total 75 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- A. Clemm : Network Management Fundamentals. CiscoPress
- ITU-T TMN M 3000 recommandation
- · CERT www.cert.org

ISC_S61 / sISC_S81 - Réseaux avancés

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_S61 (5 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	estre de référence	: S6	Responsable du modu	ıle : N	I. Mickaël Hoerdt

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- Maîtriser les éléments de base de la théorie de l'information et de la compression numérique
- Maîtriser la mise en œuvre de systèmes simples de détection et correction d'erreurs, de codage et compression de données numériques
- · Comprendre les problématiques liées aux transmissions VoIP et ToIP
- Maîtriser la configuration et la mise en place d'un serveur de streaming vidéo
- Distinguer les composants de base des architectures réseaux dites "Software Defined" et avoir un premier aperçu général de leur fonctionnement
- Automatiser la gestion des équipements de l'infrastructure d'un réseau
- Appliquer les principes de base du NetDevOps pour faire évoluer un réseau existant ou maintenir un réseau futur

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Compression et streaming – ISC_S611		50p
Virtualisation des réseaux – ISC_S612		33p

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 62 heures (taux d'encadrement de 41%)

Travail autonome 88 heures

Total 150 heures équivalent à 5 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_S611 = 60% ISC_S612 = 40%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

Détail des pré-requis :

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_S611 - Compression et streaming

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Maîtrise les éléments de base de la théorie de l'information et de la compression numérique
- Calculer l'efficacité des codes simples à longueur fixe et variable
- · Maîtriser la mise en œuvre de systèmes simples de détection et de correction d'erreurs
- · Choisir et mettre en œuvre un système simple de codage et compression de données numériques
- · Maîtriser la configuration d'un serveur de streaming vidéo
- Mettre en oeuvre une plateforme de streaming vidéo simple
- · Comprendre les problématiques liées aux transmissions VoIP et ToIP

Contenus

- · Modèles du canal de transmission théorique, information, entropie, efficacité de codage
- · Codes à longueur fixe et variables, codes réversibles
- · Base théoriques, règles de détection et correction d'erreurs
- · Construction des codes linéaires, codes de Hamming, Reed-Solomon
- · Compression des chiffres, codes de Elias
- · Compression et codes statistiques, codage arithmétique
- · Codages par dictionnaire
- · Codes convolutionnels, poinçonnage, décodage statistique
- Codage/compression de l'image, transformées entières par blocs, DCT
- Contexte des transmissions multimédia : encodage, distribution réseau, protocoles, serveur multimédia
- · Les protocoles du streaming : RTSP, SIP
- · Protocoles particuliers aux transmissions avec contraintes de temps : RTP, RTCP
- · TVoIP, VoIP, ToIP
- · Applications multimédia

Répartition horaire

Enseignement 38 heures (50 périodes de 45 minutes)

Travail autonome 52 heures

Total 90 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Mario Rossi, Audio, Presses polytechniques et universitaires romandes, 2007.
- Eric Incerti, Compression d'image, Vuibert, 2003.
- John Watkinson, La réduction de débit en audio et vidéo, Eyrolles, 1998.
- Alexandre Spataru, Fondements de la théorie de la transmission de l'information, Presses polytechniques romandes, 1987.
- Normes diverses : UIT, IETF, SMPTE, etc.
- Andrés Revuelta, support de cours : Théorie de l'information et codage ; Compression numérique de l'information ; Codage audionumérique.
- P. Beaufils, Z. Choukair, S. Tabbane, Réseaux 4G- technologies et services, Hermes, Lavoisier, 2008.
- Mihaela van der Schaar et Philip A.Chou, Multimedia over IP and Wireless networks, Elsevier, academic press, 2007.
- Mark D. Pesce, Programming DirectShow, Microsoft, 2003.
- Normes diverses : UIT, IETF, SMPTE, etc.
- · Andrés Revuelta, support de cours : Streaming ; VoIP.

Unité d'enseignement : ISC_S612 - Virtualisation des réseaux

Ce cours est une introduction pratique aux réseaux dit "Software Defined" avec une emphase particulière sur les techniques d'automatisation et de centralisation de la gestion d'un réseau par le logiciel et la programmation du plan de données indépendante de l'architecture hardware.

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Distinguer les composants de base des architectures réseaux dites "Software Defined" et avoir un premier aperçu général de leur fonctionnement
- Mettre en place et programmer des outils python qui permettent d'automatiser la gestion des équipements de l'infrastructure d'un réseau
- · Appliquer les principes de base du NetDevOps pour faire évoluer un réseau existant ou maintenir un réseau futur
- Connaître les bases et principes du langage de programmation du plan de données P4

Contenus

- · Software Defined Networks: Concepts généraux, contexte et utilisation en entreprises.
- · Network Automation et Network as Code
- · Langage de reprogrammation du plan de données réseau.

Répartition horaire

Enseignement 25 heures (33 périodes de 45 minutes)

Travail autonome 35 heures

Total 60 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- Ethane, Taking Control of the Enterprise Network, Sigcomm August 2007.
- Enabling Innovation in Campus Networks, CCR April 2008.
- Software-Defined Networks: A Systems Approach, 2020. [https://sdn.systemsapproach.org/]
- P4 : Programming Protocol-Independent Packet Processors, 2014.
- Network Programmability and Automation, Jason Edelman, Scott Lowe and Matt Oswalt, O'Reilly Media 2018.

ISC_S62 / sISC_S82 - Sécurité en entreprise

2023 - 2024

Filière : Informatique et systèmes de communication

La description de ce module définit les conditions cadres du déroulement de l'enseignement des cours le constituant. Ces conditions peuvent être modifiées ou renouvelées d'année en année mais restent inchangées durant l'année académique en cours.

Informations module ISC_S62 (7 ECTS)

Type de formation	[X]	Bachelor	[]	Master		
Type de module	[X]	Obligatoire	[]	A choix	[]	Additionnel
Niveau du module	[]	Niveau basique	[X]	Niveau intermédiaire		
	[]	Niveau avancé	[]	Niveau spécialisé		
Langue : Français	Sem	nestre de référence	: S6	Responsable du modu	ule : N	lme Noria Foukia

Objectifs d'apprentissage

À la fin du module, l'étudiant-e sera capable de :

- · Comprendre lien entre l'impact sur l'entreprise et la gestion efficace de la cybersécurité
- Explorer les réalités opérationnelles de la mise en oeuvre de politiques de sécurité en entreprise (court terme et long terme)
- · Prendre des décisions efficaces et développer un plan de protection efficace
- · Connaître les mécanismes de sécurité et vulnérabilités des réseaux mobiles et sans fil et maitriser les solutions associées
- · Saisir l'importance des structures offrant des services à haute disponibilités
- · Mettre en oeuvre diverses solutions de réseau privé virtuel
- · Connaître des méthodes utilisées pour assurer la qualité des services fournis

Unités de cours

Unité d'enseignement (obligatoire)	Semestre automne	Semestre printemps
Pratique métier en sécurité – ISC_S621		44p
Sécurité des réseaux de télécoms – ISC_S622		44p
Services et applications des SI – ISC_S623		40p

Une période d'enseignement est de 45 min.

Répartition horaire

Enseignement 96 heures (taux d'encadrement de 46%)

Travail autonome 114 heures

Total 210 heures équivalent à 7 ECTS

Modalités d'évaluation et de validation

Les modalités générales de validation des modules sont définies dans le *Règlement d'études* (seulement disponible dans l'intranet). Ce cours peut faire l'objet d'une remédiation.

Coefficients de calcul de la note déterminante du module :

ISC_S621 = 35% ISC_S622 = 35% ISC_S623 = 30%

Prérequis

Pour les conditions générales de prérequis des modules voir le Règlement d'études (seulement disponible dans l'intranet).

Détail des pré-requis :

- Tableau des "Dépendances inter-modules", pour la filière Informatique et systèmes de communication
- · Conditions d'admissions HES

Unité d'enseignement : ISC_S621 - Pratique métier en sécurité

Les cyberattaques menacent de plus en plus les entreprises et leurs systèmes de sécurité. Ces organisations doivent se protéger contre les pirates informatiques qui utilisent les vulnérabilités du système de sécurité pour s'introduire dans l'entreprise. Ceci est exacerbé par la transformation numérique des services d'entreprises et l'augmentation globale de la digitalisation.

Objectifs d'apprentissage

Le projet en sécurité permet de développer une meilleure pratique de la cybersécurité en entreprise et de l'acquérir à travers des cas d'étude concrets en travaillant en équipe.

À la fin du cours, l'étudiant-e doit être capable de :

- · Approfondir ses connaissances pratiques en cybersécurité
- Comprendre le lien entre l'impact sur l'entreprise (commercial, social, réputation, vie privée) et la gestion efficace de la cybersécurité
- Explorer les réalités opérationnelles/pratiques de la mise en oeuvre de stratégies/politiques de sécurité en entreprise (court terme et long terme)
- Prendre des décisions efficaces et développer un plan de protection efficace
- Gérer le déroulement d'un projet de manière autonome.

Contenus

Au cours du projet de sécurité les étudiant.e.s développeront leur capacités à :

- Evaluer le niveau sécuritaire d'une infrastructure digitale
- Reconnaître les failles et en évaluer les risques (systèmes, configuration, applications,...)
- Identifier les intervenants et leur rôle dans la protection globale de l'infrastructure étudiée
- Proposer un plan d'action de sécurité selon le cas étudié
- · Déployer une solution de protection selon le plan d'action et les bonnes pratiques sécuritaires
- Mesurer les résultats atteints : P.ex : tests de pénétration, effet sur les ressources (mémoire, espace disque, processeurs, ...), disponibilité des applications, lister les mises à jour

Répartition horaire

Enseignement	33	heures	(44 périodes de 45 minutes)
Travail autonome	41	heures	
Total	74	heures	de travail pour ce cours

Modalités d'enseignement

[]	Ex cathedra (amphi)	[]	Frontal participatif	[X]	Atelier / Laboratoire / Séminaire
----	---------------------	----	----------------------	-----	-----------------------------------

Modalités d'évaluation

Rendu de rapport et présentation.

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

- A. Planche, J. Del Duca. La sécurité informatique en mode projet : Organisez la sécurité du SI de votre entreprise. 2ème édition, 2017.
- J.-P. Mouton. La sécurité en entreprise : Sensibilisation des personnels et mise en oeuvre d'un plan d'action. 2ème édition, 2006.

Unité d'enseignement : ISC_S622 - Sécurité des réseaux de télécoms

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- · Connaitre les mécanismes de sécurité et vulnérabilités des réseaux mobiles et sans fil
- Connaître la sécurité actuelle des réseaux sans fil et mobiles actuels, à savoir Wi-Fi, WiMAX, Bluetooth, GSM/UMTS et LoRa
- · Maitriser les solutions de sécurité adaptées aux réseaux sans fil et mobiles

Contenus

- · Introduire l'ensemble des notions de sécurité de base
- Expliquer les fonctions de hachages, les signatures électroniques, les infrastructures de gestion de clés et les certificats électroniques
- · Mécanismes de sécurité propres au sans fil
- · Tatouage robuste de contenus multimédias
- · Sécurité des réseaux Wi-Fi, WiMAX
- · Sécurité dans les réseaux mobiles de télécommunication
- · Sécurité dans les réseaux de capteurs sans fil et gestion des clefs

Répartition horaire

Enseignement 33 heures (44 périodes de 45 minutes)

Travail autonome 41 heures

Total 74 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

· H. Chaouchi, M. Laurent-Maknavicius. La sécurité dans les réseaux sans fil et mobiles. Hermes.

Unité d'enseignement : ISC_S623 - Services et applications des SI

Objectifs d'apprentissage

À la fin du cours, l'étudiant-e doit être capable de :

- Saisir l'importance des structures offrant des services à haute disponibilités (structure des Datacenters)
- Mettre en oeuvre diverses solutions de réseau privé virtuel (VPN)
- Connaître des méthodes utilisées pour assurer la qualité des services fournis (QoS)

Contenus

- Les services IPv6 (DHCPv6, DNS6, OSPFv3)
- Structures de réseaux redondants (niveau access, distribution et core network)
- · Fonctionnement des multilayer switches
- Etude des protocoles utilisés dans la mise en place de VPN (L2TT, PPTP, IPSEC)
- Principes et méthodes pour assurer une qualité de service (QoS)

Répartition horaire

Enseignement 30 heures (40 périodes de 45 minutes)

Travail autonome 32 heures

Total 62 heures de travail pour ce cours

Modalités d'enseignement

[] Ex cathedra (amphi) [X] Frontal participatif [X] Atelier / Laboratoire / Séminaire

Modalités d'évaluation

Contrôle continu (présentation orale, travaux écrits et/ou travaux pratiques).

La note de l'unité d'enseignement est calculée en faisant une moyenne pondérée des diverses notes obtenues pendant le semestre. Les dates et les pondérations sont transmises au début du cours.

Références bibliographiques

• Conception de la structure Active Directory : technet.microsoft.com

Guide to IPsec VPNs : csrc.nist.gov

· Multilayer switches : www.cisco.com

